
KIT - University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

CryFS: Design and Implementation of a
Provably Secure Encrypted Cloud Filesystem

Master’s thesis

Sebastian Messmer

Institute of Theoretical Informatics
Competence Center for Applied Security Technology (KASTEL)

Department of Informatics
Karlsruhe Institute of Technology

Supervisor: Prof. Dr. Jörn Müller-Quade
Advisor: Dipl.-Inform. Jochen Rill

Writing Time: April 16, 2015 – October 15, 2015

I hereby declare that this thesis is my own work, and that I have not used any sources and
aids other than those stated in the thesis.

Karlsruhe, October 15, 2015

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 15. Oktober 2015

Abstract

Cloud storage as offered by Dropbox and others is increasingly important for companies
and individuals alike. However, the most cited limiting factors are confidentiality and
integrity risks. To the best of our knowledge, there are no solutions that are secure and
also easy enough to be used for cloud storage, and no solution for which there have been
security proofs published. We introduce CryFS, a transparent and easy to use cryptographic
filesystem, designed to be used with third party cloud storage solutions. Filesystem data
is split into same-size blocks to be encrypted individually. This ensures confidentiality of
file contents, file metadata and the directory structure. Integrity is achieved by keeping
additional data like block version counters. We prove confidentiality and integrity using
game based security notions. Different design alternatives are discussed and we develop
balanced left-max-data trees, a tree data structure used by CryFS, which we prove to have
minimal space overhead and to allow fast filesystem operations. We also provide a CryFS
implementation and show that the filesystem is fast, allowing it to be used in practice.

vi

Abstract

Immer mehr Firmen und Privatpersonen speichern wichtige Daten in der Cloud. Die
meistgenannten limitierenden Faktoren sind Vertraulichkeits- und Integritätsrisiken. Un-
serer Kenntnis nach gibt es keine Lösung, die sicher und gleichzeitig einfach genug ist,
um für Cloudspeicher eingesetzt zu werden, und keine Lösung, für die Sicherheitsbeweise
veröffentlicht wurden. In dieser Arbeit stellen wir CryFS vor, ein transparentes und le-
icht zu benutzendes kryptographisches Dateisystem, dazu entworfen, mit Drittsoftware
für Cloudsynchronisation zusammenzuarbeiten. Die Daten des Dateisystems werden in
Blöcke gleicher Größe aufgeteilt und die Blöcke getrennt verschlüsselt. Das garantiert
Vertraulichkeit der Dateiinhalte, Dateimetadaten und der Verzeichnisstruktur. Integrität
wird erreicht, indem zusätzliche Informationen wie Versionsnummern gespeichert wer-
den. Wir beweisen Vertraulichkeit und Integrität mit spielbasierten Sicherheitsbegriffen.
Verschiedene Entwurfsalternativen werden vorgestellt und wir entwickeln balancierte left-
max-data Bäume, die von CryFS verwendet werden, und wir beweisen dass diese minimalen
Platzverbrauch haben und schnelle Dateisystemoperationen ermöglichen. Wir stellen außer-
dem eine CryFS Implementierung zur Verfügung und zeigen, dass das Dateisystem schnell
ist, wodurch es in der Praxis eingesetzt werden kann.

viii

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Related Work . 2

1.3 Structure . 4

2 Datastructure Theory 5

2.1 Basics . 6

2.2 Perfect Trees . 6

2.3 Left-Perfect Trees . 7

2.4 Max-Data Trees . 9

2.5 Left-Max-Data Trees . 11

2.6 Balanced Trees . 11

2.7 Min-Data Trees . 12

2.8 Space Overhead . 14

2.9 Random Access . 16

2.10 Resizing . 16

2.10.1 Querying Size . 16

2.10.2 Growing . 17

2.10.3 Shrinking . 18

3 Cryptography Basics 21

3.1 Security Definitions . 21

3.1.1 Security Goals . 21

3.1.2 Attacker Models . 23

3.1.3 Integrity . 25

3.1.4 Relations . 26

3.2 Block Ciphers . 27

3.3 Modes of Operation . 28

3.3.1 Electronic Codebook Mode (ECB) 28

3.3.2 Cipher Block Chaining Mode (CBC) 29

3.3.3 Counter Mode (CTR) . 30

3.3.4 Galois Counter Mode (GCM) . 30

3.4 Conclusion . 31

4 System Design 33

4.1 General Idea . 33

4.2 Design Goals . 34

4.2.1 Achieving the Goals . 35

x Contents

4.3 Design Overview . 39
4.4 Encryption Layer . 41

4.4.1 Integrity . 41
4.5 Blobstore Layer . 43
4.6 Filesystem Layer: Storing Directory Structure 44

4.6.1 Central Directory Structure . 44
4.6.2 Directory Blobs . 46
4.6.3 Real Directories . 49
4.6.4 Path Headers . 51
4.6.5 Parent Pointers . 53
4.6.6 Conclusion . 55

5 System Reference 57
5.1 Config File . 57
5.2 Block Layout . 58
5.3 Blob Layout . 59

6 Implementation and Evaluation 61
6.1 Software Architecture . 61

6.1.1 Blockstore . 61
6.1.2 Blobstore . 63
6.1.3 Filesystem . 65

6.2 Performance Evaluation . 66
6.2.1 Experiment Setup . 66
6.2.2 Read and Write Tests . 67
6.2.3 Seek, Create, Stat and Delete Tests 67
6.2.4 Conclusion . 67

7 Security Analysis 71
7.1 Model . 71
7.2 Attacker Restrictions . 73

7.2.1 Confidentiality . 73
7.2.2 Integrity . 74

7.3 Confidentiality . 75
7.4 Integrity . 80
7.5 Adaptive Security . 86

7.5.1 Goals . 86
7.5.2 Attacker Types . 87
7.5.3 Adapting CryFS . 87
7.5.4 Database Privacy . 88

7.5.4.1 Readonly Queries . 88
7.5.4.2 Write Queries . 89

7.5.5 Query Privacy . 90
7.5.6 Conclusion . 90

7.6 Summary . 90

8 Conclusion 91

Bibliography 93

1. Introduction

Cloud storage is becoming increasingly important. Keeping personal files in the cloud allows
for easy synchronization between different devices like computers, tablets or smartphones,
or even sharing them with friends. Providers like Dropbox, Google, Microsoft, Amazon and
many more are offering cheap cloud storage including synchronization clients running on
the client devices. Unfortunately, most of these solutions store the user data on the servers
in plaintext, so the user has to trust the storage provider to keep the files confidential and
unmodified. However, in the current post-PRISM world, individuals and companies get
increasingly cautious about security and privacy.

In a 2014 survey by the European Union [SR14], over 20% of individuals used cloud storage
solutions to save documents, pictures, music, videos or other files, while 35% were aware
of cloud services but did not use them. Of this last group, 44% cited security or privacy
concerns as reason for not making use of such services. In the young generation (16-24), the
percentage of people using cloud storage solutions was even higher at 35%. This predicts
cloud storage to become increasingly used by individuals, with security and privacy being
major barriers.

Further, companies start to use this opportunity for backup and archive, but also for
storing files safely and for synchronizing them between devices and team members. In a
2014 survey by the European Union among companies [GS14], 19% used cloud services. Of
them, 53% used it to store files. About half of the companies were classified as “highly
dependent” on these cloud services. For both, large and small/medium companies, the risk
of a security breach scored as the highest limiting factor for their usage of cloud services
with 57% and 38% respectively.

A key requirement for a solution to this is simplicity of use. A solution where users
have to encrypt their data manually and then upload encrypted containers will not be
widely accepted. Since Dropbox itself is very simple to use, users expect the same from a
secure cloud storage solution. To be equally simple, a solution has to keep cryptography
transparently in the background without influencing the user’s workflow.

2 1. Introduction

1.1 Contribution

In this thesis, we design and implement CryFS1, a provably secure filesystem for cloud
storage. The filesystem is easy to use. Each client offers direct access to virtual plaintext
files at its mount location, where the user can work with them and ignore the encryption
layer. In the background, these files are encrypted and the ciphertext is stored to the
local disk, where cloud clients can access it for synchronization. CryFS hides file contents,
and also file metadata and the directory structure are provably secure from being read
by attackers. Ciphertext data is kept in small same-size blocks, which are individually
synchronized. Local changes only cause few blocks to be resynchronized. The reference
implementation is open source and available on github2. While the primary target is to
work together with cloud storage tools like Dropbox, it can easily be modified to use other
synchronization software like Rsync3 or Unison4, or even to work without a local copy of
ciphertexts and directly store the blocks remotely, for example on NFS or Amazon S3.

We also describe the theory behind balanced left-max-data trees, a tree structure developed
for CryFS to store its data, describe the algorithms for accessing these trees and prove
their correctness. Furthermore, we prove that balanced left-max-data trees only have
very little space overhead and allow fast filesystem operations. We show that CryFS can
be used in practice by providing experiments comparing CryFS to other filesystems. We
discuss different design options on how directory structure can be stored and explain our
design choices. We provide an overview over the software architecture of the reference
implementation and give a reference for future implementators. Using game based security,
we prove confidentiality and integrity of file contents, file metadata and directory structure.
We also take a brief look at adaptive security scenarios, where an attacker gets information
about the access patterns of filesystem operations.

1.2 Related Work

We discuss alternative solutions as well as research relating to this thesis.

Alternatives

There are small cloud storage providers like SpiderOak5 that keep the user data on their
servers in encrypted form, but their client software is not open source, so users still need
to trust them and since the implementation is not open, neither is the security proven.

There is EncFS6, which is open source, offers client side encryption and can be combined
with any cloud storage provider to upload the encrypted data only, but it lacks important
security features. EncFS encrypts files individually, but leaves the directory structure
and file metadata unencrypted. Using this metadata, it is quite simple for an attacker
to distinguish a music CD collection that has about 20 files per directory with about
3MB each from a folder containing documents. Furthermore, it is quite easy to figure out
whether there is a directory containing a certain set of known files, for example the content

1http://www.cryfs.org
2https://github.com/cryfs/cryfs
3https://rsync.samba.org/
4http://www.cis.upenn.edu/˜bcpierce/unison/
5https://spideroak.com
6http://www.arg0.net/#!encfs/c1awt

http://www.cryfs.org
https://github.com/cryfs/cryfs
https://rsync.samba.org/
http://www.cis.upenn.edu/~bcpierce/unison/
https://spideroak.com
http://www.arg0.net/#!encfs/c1awt

1.2. Related Work 3

of a known software distribution CD. EncFS uses MACs to protect file integrity, but the
enabling flag is kept in a config file which is stored with the encrypted data in plaintext.
An attacker can simply switch it off. Even when enabled, integrity only works on per-file
level and does not prevent adding or deleting files or replacing them with old versions. A
security audit [Hor14] showed some other serious flaws in the current implementation of
EncFS. In the conclusion, they state that EncFS is not safe if an attacker gets two or more
snapshots of the ciphertext at different times. This makes it unusable for secure cloud
storage, because a cloud storage provider has access to many snapshots over time. Some
providers like Dropbox even explicitly store different file versions over time to allow rolling
back to previous versions. In this scenario, not only the storage provider itself, but also an
attacker having access to an account gets access to many snapshots of the ciphertext at
different times.

Another potential solution is eCryptFs7. Like EncFS, it encrypts files individually and does
not hide directory structure. Furthermore, it does not work well with cloud synchronization
clients, because it does not allow them to change the underlying encrypted files while the
filesystem is mounted. If another device makes some changes and they are synchronized, the
cloud synchronization client updates the encrypted files, which causes undefined behaviour
of the eCryptFs implementation.

There are other software solutions like TrueCrypt8, which is discontinued, its unofficial
successor VeraCrypt9, and dm-crypt10, that hide directory structure by encrypting the
whole filesystem into one big container, but these solutions are hard to combine with cloud
storage providers because providers synchronize on a per-file basis and do not know about
the contents of the container file. Changing a small file in the filesystem can cause the
whole container to be resynchronized, which leads to bad performance. Furthermore, even
if two clients modify entirely different folders, this causes a synchronization conflict and
only one of the versions survives. Thus, these solutions are not usable for cloud storage.

There is a scientific publication about eCryptFS [Hal05], but it only describes the design and
does not contain security notions or proofs. There are some works providing analysis [Mia10]
and describing various attacks [Tea11] on TrueCrypt, but none of them contains security
notions or proofs. To the best of our knowledge, there are no scientific publications for
SpiderOak, EncFS or VeraCrypt, and for none of the alternatives listed in this section
there have been security proofs published.

Research

Damg̊ard et al. [DD05] introduce a formalization of disk encryption that is based on the
Universal Composability framework. In this thesis, however, we follow the simpler game
based approach for modeling security. Kristian Gjøsteen [Gjø05] introduces some game
based notions for disk encryption. They define non-adaptive and adaptive chosen plaintext
and chosen ciphertext attacks against semantic security, non-malleability, plaintext-integrity
and ciphertext-integrity. They also describe what kind of real life attacker corresponds to
each of these attacker definitions. They establish relations between the security notions and

7http://ecryptfs.org/
8http://truecrypt.sourceforge.net/
9https://veracrypt.codeplex.com/

10https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt

http://ecryptfs.org/
http://truecrypt.sourceforge.net/
https://veracrypt.codeplex.com/
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt

4 1. Introduction

build some simple hard disk encryption schemes to fulfill different notions. The security
notions used in this thesis are similar to the ones they introduced. We also use some of their
construction ideas to avoid common pitfalls in designing a hard disk encryption scheme.
Dirk Achenbach et al. [Ach+15] introduces security notions for adaptive security. These
notions are the basis for a brief look at adaptive security properties of CryFS in this thesis.

Matt Blaze et al [Bla93] develop the cryptographic filesystem CFS for Unix. The work
was published in 1993 and the technologies used, e.g. DES, are outdated and known to be
insecure by now. They define the filesystem and implement it for practical use, but they
do not provide security notions or proofs.

Olaf Burkhart et al. [BM95] introduce the concept of left-perfect binary trees. We generalize
this definition to left-perfect k-ary trees and lead this to the definition of balanced left-
max-data trees. These are the kind of trees used by CryFS to store data.

1.3 Structure

In Section 2, we introduce the data structures used by CryFS. The filesystem uses balanced
left-max-data trees, a class of trees specifically developed for CryFS. This section also
introduces some algorithms and proves that these trees only have very little space overhead
and allow fast filesystem operations. In Section 3, we introduce cryptographic primitives
like block ciphers and explain the basic security definitions that are needed in later sections.
Section 4 describes the filesystem design and explains how confidentiality and integrity are
achieved. It also discusses some alternative designs and explains our choices. Section 5
contains a reference, so for example the layout used to store block data on disk. This
can be used to implement other software working with CryFS encrypted data. Section 6
describes some of the details of the reference implementation and how we implemented the
filesystem to be fast and secure. It also contains experiments comparing the performance
of CryFS against alternatives. Section 7 contains the proofs for confidentiality and integrity
of the user data stored in the filesystem.

2. Datastructure Theory

A block is an amount of data with fixed size. A binary large object or blob is an arbitrarily
sized and resizeable amount of data. As described before, CryFS stores the filesystem using
blocks. That is, it needs a way to store a blob like for example a file, while only using fixed
size blocks.

In this section, we introduce balanced left-max-data trees, a special kind of tree used to
split a blob into blocks. Intuitively speaking, a balanced left-max-data tree is a tree where
all leaves are on the same level, all leaves are as far left as possible, and as few inner nodes
as possible are used. CryFS stores each node in a block. Leaves store actual data and
internal nodes store only pointers to their children. They enforce leaf order and allow fast
random access.

Balanced left-max-data trees are based on left-perfect k-ary trees, which we introduce as a
generalization of left-perfect binary trees [BM95]. We introduce algorithms for resizing,
querying the blob size and random access. We also introduce perfect trees, which cannot
store more leaves without increasing tree depth, and correspondingly max-data trees,
which cannot store more bytes of data without increasing tree depth. Max-data trees are
important for the resizing algorithm to recognize whether the tree depth has to be increased
in an operation growing the blob. Min-data trees are introduced for the resizing algorithm
to recognize whether the tree depth can be decreased in an operation shrinking the blob.

The following sections formalize these concepts. We also prove properties of balanced
left-max-data trees and use these properties to prove that the algorithms are correct, space
overhead is little and random access is fast.

Variable names

Throughout this thesis, the following variable names are used:

k Number of children an inner node can store
L Number of bytes a leaf can store
n Number of nodes in a tree
` Number of leaves in a tree
d Depth of a tree (not including root node level, a one-node tree has depth 0)
N Number of bytes stored in a tree

6 2. Datastructure Theory

2.1 Basics

In this section, we introduce the basic tree terminology used throughout the thesis. All
trees are ordered trees, i.e. the children of a node have indices. Let T1 and T2 be trees
with the same nodes, namely a root R and one child of the root C. In T1, C has a different
index than in T2. Then T1 and T2 are different trees.

Definition 2.1 (k-ary tree)
A k-ary tree is a rooted tree where each node has at most k children with k ≥ 2.

Corollary 2.2
A k-ary tree of depth d has at most kd leaves.

Definition 2.3 (induced subtree)
A subtree S induced by a node K in a tree T consists of K and the nodes in the subtrees
induced by its children (if any). The edges of S are the edges of T whose endpoints are
both in S. The node K is the root of S.

Definition 2.4 (rightmost child)
The rightmost child of a node is the child with the highest index that actually exists.

Definition 2.5 (right-border node)
A right-border node is a node on the path from the root down to the rightmost leaf (always
taking the rightmost child on the way).

2.2 Perfect Trees

This section introduces perfect trees [Toa], a kind of tree having the maximal number
of leaves given a maximal depth; see Figure 2.1. They also have the minimal number of
inner nodes any tree with the same number of leaves can have. That is, when storing that
number of leaves, a perfect tree has the least possible space overhead.

Definition 2.6 (full k-ary tree)
A full k-ary tree is a k-ary tree where each node has either exactly k children (internal
node) or 0 children (leaf).

Definition 2.7 (perfect k-ary tree)
A perfect k-ary tree is a full k-ary tree where all leaves are at the same depth.

Lemma 2.8
A perfect k-ary tree of depth d has exactly l := kd leaves, which is the maximal number of
leaves any k-ary tree of depth d can have. All leaves are on level d. All nodes with less
depth are internal nodes and have exactly k children.

Proof All leaves are on the same level by Definition 2.7. So all nodes on levels closer to
the root are internal nodes. The leaves are on level d. Since a perfect k-ary tree is a full
k-ary tree, the internal nodes have exactly k children. This is, the entire tree structure is
determined by the depth. Level 0 has k0 = 1 node (the root node). If level i has ki nodes,
then each of these nodes has k children and level i+ 1 has ki · k = ki+1 nodes. So level d
has kd leaves. Corollary 2.2 implies that this is the maximal number of leaves any k-ary
tree of depth d can have.

2.3. Left-Perfect Trees 7

(a) (b) (c)

(d) (e)

Figure 2.1 Examples for perfect and not-perfect k-ary trees. Tree (a) shows a perfect
2-ary tree and (b) and (c) show perfect 3-ary trees. Tree (d) has an internal
node with less than k children, is therefore not full and not perfect. Tree (e)
is a full tree, but not perfect, because not all leaves are on the same level.

Lemma 2.9
If a tree is a perfect k-ary tree, then all subtrees induced by its nodes are perfect k-ary
trees.

Proof The nodes of the induced subtree are also nodes of the whole tree, so they have
either exactly k or 0 children. This is, the subtree is a full k-ary tree. A subtree on level i
has depth di = d− i. Since all leaves in the original tree are on level d, the leaves of this
subtree are now on level d− i. So they are all on the same level. As a consequence, the
subtree is a perfect k-ary tree.

2.3 Left-Perfect Trees

As described before, a perfect tree stores a number of data leaves with minimal space
overhead. However, perfect trees can only be used if the number of leaves is expressible
as ` = kd; see Lemma 2.8. Most blobs have a number of leaves that is not expressible as
` = kd. To be able to reason about them, we introduce left-perfect k-ary trees.

The restriction remains that all leaves have to be on the same level. The reason for this
restriction is that it simplifies the algorithms for calculating the blob size and randomly
accessing a stored data byte with a certain index.

In their work about the Mathematics of Program Construction [BM95], Bernhard Möller et al.
introduce a notion of left-perfect binary trees. In this section, we generalize this concept
for k-ary trees; see Figure 2.2.

8 2. Datastructure Theory

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.2 Examples for left-perfect and not-left-perfect k-ary trees. Tree (a) is a perfect
tree and therefore also left-perfect. Tree (b) is a left-perfect 3-ary tree. Tree
(c) is not, because not all leaves are at the same depth. Tree (d) is left-perfect.
In tree (e) not all children are as far left as possible and in tree (f) the left child
of the root does not induce a perfect tree, so they both are not left-perfect.
Trees (g), (h) and (i) are left-perfect.

Definition 2.10 (left-perfect k-ary tree)
A left-perfect k-ary tree is a k-ary tree with the following properties:

1. All induced subtrees except for the ones induced by the root or the rightmost child
of a node are perfect k-ary trees. The root and rightmost children may but do not
have to induce perfect k-ary trees.

2. All leaves are at the same depth.

3. All children of a node have the smallest possible indices, i.e. are as far left as possible.

Lemmata 2.11 and 2.12 show a relation between left-perfect trees and perfect trees.

Lemma 2.11
A perfect k-ary tree is a left-perfect k-ary tree.

Proof In a perfect k-ary tree, all induced subtrees are perfect k-ary trees (Lemma 2.9)
and all leaves are at the same depth. This is, the first two conditions for left-perfect k-ary
trees are fulfilled.

2.4. Max-Data Trees 9

In a perfect k-ary tree, each node has the maximum number of children. This way, all
children have the smallest possible indices. The third condition for left-perfect k-ary trees
is fulfilled.

Lemma 2.12
In a left-perfect k-ary tree, all subtrees induced by non-right-border nodes are perfect k-ary
trees.

Proof If a node is not a rightmost child, it has to induce a perfect k-ary tree by Defini-
tion 2.10. So the only nodes we have to look at are the nodes that are rightmost children
but not right-border nodes. Let K be one of these nodes. Then there exists a node P
on the path from K to the root, which is not a rightmost child, since otherwise, K is a
right-border node. Since P is not a rightmost child, it has to induce a perfect k-ary subtree.
Since the subtree induced by K is a subtree of the subtree induced by P , Lemma 2.9
implies that the subtree induced by K is also a perfect k-ary tree.

Lemma 2.13
In a left-perfect k-ary tree, all subtrees induced by its nodes are left-perfect k-ary trees.

Proof Let K be a node in a left-perfect k-ary tree T . We now show that the subtree
induced by K is a left-perfect k-ary tree.
Case 1: K is a non-right-border node. Then K induces a perfect k-ary tree by Lemma 2.12.
As a consequence of Lemma 2.11, K induces a left-perfect k-ary tree.
Case 2: K is a leaf. In this case, it trivially induces a left-perfect k-ary tree.
Case 3: K is a right-border node, and not a leaf. For K to be a left-perfect k-ary tree, it
has to fulfill Definition 2.10. Let us look at an arbitrary node P in the subtree induced by
K and let C be a child of P . If C is not the rightmost child of P , it is not a right-border
node of T and induces a perfect k-ary tree according to Lemma 2.12. This fulfills the first
condition of Definition 2.10. All leaves of T are at the same depth, and all leaves of the
subtree induced by K are also leaves of T . So they are also at the same depth. This fulfills
the second condition. Since each node in the subtree induced by K is also a node in T , the
third condition can also directly be derived from T being a left-perfect tree.

2.4 Max-Data Trees

Using left-perfect k-ary trees, an arbitrary number of leaves can be stored with little space
overhead. However, there still is the restriction that it can only store blob sizes that are a
multiple of the number of bytes one leaf can store. To allow byte-grained resizeable blobs,
it has to be allowed that a leaf stores less data than it actually could hold. This leads to
the introduction of max-data trees in this section, and left-max-data trees in the next one.
Max-data trees are storing the maximal amount of data any tree with its depth could hold.
They are an important corner case for the resizing algorithms in Section 2.10.

Definition 2.14 (max-data leaf)
A max-data leaf is a leaf which stores the maximum number of bytes it can hold. It stores
L bytes of data.

Definition 2.15 (max-data tree)
A left-perfect k-ary tree is called a max-data tree if it is holding the maximum number of
bytes a left-perfect k-ary tree of its depth can possibly hold.

10 2. Datastructure Theory

This is, if a max-data tree should be grown by one byte, the depth of the tree has to be
increased.

Corollary 2.16
In a max-data tree, all leaves are max-data leaves.

The following Lemmata 2.17 and 2.18 explain the relation between perfect k-ary trees and
max-data trees.

Lemma 2.17
A max-data tree is a perfect k-ary tree.

Proof Assume T to be a tree which is a max-data tree but not a perfect k-ary tree. Let
d be the depth of the tree. Since it is not a perfect k-ary tree, there either is an internal
node with less than k children or there is a leaf not on level d; see Definition 2.7 and
Definition 2.6.

Since T is a max-data tree, it is a left-perfect tree. By Definition 2.10, all leaves are on the
same level. That is, to not be a perfect k-ary tree, T must have an internal node with less
than k children.

If this is the case, then another child can be added to that node to store more data without
changing the tree depth. Adding another child can be done without hurting the left-perfect
property, so this operation is allowed.

This way, another byte of data can be stored without changing the tree depth. That is a
contradiction to T being a max-data tree.

Lemma 2.18
A perfect k-ary tree where all leaves are max-data leaves is a max-data tree.

Proof Let T be a perfect k-ary tree where all leaves are max-data leaves. The two ways
of adding more data to a tree are (a) adding another leaf and (b) adding more data to an
existing leaf.

According to Lemma 2.8, another leaf cannot be added to the tree without changing the
tree depth. Since each leaf is a max-data leaf, no leaf can store any more data. The tree T
is a max-data tree.

Corollary 2.19
Using Corollary 2.16 and Lemmata 2.17 and 2.18, the following statements are equivalent:

• T is a max-data tree.

• T is a perfect k-ary tree where all leaves are max-data leaves.

Lemma 2.20
A max-data k-ary tree with depth d where each leaf can store up to L bytes, stores L · kd
bytes.

Proof A max-data tree is a perfect k-ary tree; see Lemma 2.17. According to Lemma 2.8,
it has ` = kd leaves. Since each leaf can store up to L bytes and is a max-data leaf,
each leaf actually stores L bytes; see Corollary 2.16. The total number of bytes stored is
L · ` = L · kd.

2.5. Left-Max-Data Trees 11

2.5 Left-Max-Data Trees

Although max-data trees store a certain amount of data with minimal space overhead, this
only works if the number of bytes is expressible as L · kd; see Lemma 2.20. This is often
not the case. Very similar to the way we introduced left-perfect k-ary trees due to the size
restrictions of perfect k-ary trees, we now introduce left-max-data trees because of the size
restrictions of max-data trees.

Definition 2.21 (left-max-data tree)
A left-max-data tree is a left-perfect k-ary tree where all leaves except for the rightmost leaf
are max-data leaves. The rightmost leaf is allowed to, but does not have to be a max-data
leaf.

Lemmata 2.22 and 2.24 explain the relation between max-data trees and left-max-data
trees.

Lemma 2.22
A max-data tree is a left-max-data tree.

Proof A max-data tree is a perfect k-ary tree by Lemma 2.17. So it is especially a
left-perfect k-ary tree; see Lemma 2.11. In a max-data tree, all leaves are max-data leaves;
see Corollary 2.16. This fulfills the definition of a left-max-data tree.

Lemma 2.23
In a left-max-data tree, all nodes except for the right-border nodes induce max-data trees.

Proof Let T be a left-max-data tree and let P be a non-right-border node in T . By
Definition 2.21, T is a left-perfect k-ary tree. P induces a perfect k-ary tree according to
Lemma 2.12. Since P is not a right-border node, the rightmost leaf of T is not part of the
subtree induced by P . So by Definition 2.21, all leaves contained in the subtree induced by
P are max-data leaves. According to Lemma 2.18, the subtree induced by P is a max-data
tree.

Lemma 2.24
In a left-max-data tree, all nodes induce left-max-data trees.

Proof For non-right-border nodes, Lemma 2.23 together with Lemma 2.22 conclude the
proof. Let us look at a right-border node P of a left-max-data tree T . According to
Lemma 2.13, P induces a left-perfect k-ary tree. According to Definition 2.21, the only
leaf in T which is allowed to be a non-max-data leaf is the rightmost one. This implies the
same restriction for the subtree induced by P and fulfills Definition 2.21.

2.6 Balanced Trees

The goal of using left-max-data trees is to use as little disk space as possible when storing
a blob. Using a left-max-data tree already fulfills a lot of the preconditions for that, but
does not handle one special case. It still allows a chain of single-child nodes at the root,
therefore unnecessarily storing additional nodes, as shown in the examples in Figure 2.3.
This leads to the definition of balanced left-max-data trees, which finally fulfill the goal.

12 2. Datastructure Theory

Figure 2.3 Examples for trees that are left-perfect but not balanced, because the root
node has only one child. In a balanced left-perfect tree, the root node is either
a leaf or has at least two children.

Definition 2.25 (balanced left-perfect tree)
A balanced left-perfect tree is a left-perfect tree where the root is either a leaf or has at
least two children.

Definition 2.26 (balanced left-max-data tree)
A balanced left-max-data tree is a balanced left-perfect tree which is also a left-max-data
tree.

Lemma 2.27 shows that the problem in Figure 2.3 can only arise for left-perfect or left-
max-data trees, but not for perfect or max-data trees.

Lemma 2.27
A perfect k-ary tree is a balanced left-perfect k-ary tree.

Proof According to Lemma 2.11, a perfect k-ary tree is a left-perfect k-ary tree. So the
only thing left to prove is that it is balanced. If we assume it is not balanced, then the
root has exactly one child; see Definition 2.25. Since the tree is a perfect tree, it is a full
tree (see Definition 2.7), which means each node has either 0 or k children. This is a
contradiction, because Definition 2.1 requires k ≥ 2.

Lemma 2.13 showed that any node in a left-perfect tree induces a left-perfect tree.
Lemma 2.24 showed the same for left-max-data trees. With that, any node of a bal-
anced left-perfect/left-max-data tree also induces a left-perfect/left-max-data tree, but
the induced tree is not necessarily balanced. A simple example are right-border nodes in
min-data trees from the following section.

Balanced left-max-data trees are the trees used by CryFS to store blobs using same-size
blocks. The goal for using balanced left-max-data trees is to minimize space overhead.
Later in Section 2.8, we discuss the space overhead for balanced left-max-data trees.

2.7 Min-Data Trees

Balanced left-max-data trees are used to store resizeable blobs with minimal space overhead
and we introduced max-data trees to describe a situation where the number of stored bytes
cannot be grown without increasing the depth of the tree. Analogously, we now introduce
min-data trees to describe a situation where the depth of the tree can be decreased if the
number of stored bytes is shrunk.

Definition 2.28 (min-data leaf)
A min-data leaf is a leaf which stores exactly one byte of data.

2.7. Min-Data Trees 13

Min-data leaves are defined to contain one byte as opposed to zero bytes. The reason is
that if a leaf contains zero bytes, it is not stored at all. So a min-data leaf contains the
minimum amount of data while still being useful.

Definition 2.29 (min-data tree)
A left-max-data tree is called min-data tree if it is holding the minimum number of bytes
that cannot be held in a left-perfect tree with smaller depth.

The following Lemma 2.30 explains how a min-data tree can be recognized.

Lemma 2.30
A left-max-data tree is a min-data tree if and only if the root is a leaf which stores only
one byte or both the following conditions are met

1. The root has exactly two children

2. The subtree induced by the right child of the root stores exactly one byte of data.

Proof
Part 1: Let T be a left-max-data tree where the root is a leaf that stores only one byte. A
tree with a lower depth could not hold any bytes, so this one byte is the minimum number
of bytes that cannot be held in a left-perfect tree with a smaller depth. T is a min-data
tree.

Part 2: Let T be a left-max-data tree of depth d which fulfills both conditions: The root
has exactly two children and the subtree induced by the right child of the root stores
exactly one byte of data. Let the left child of the root store i bytes of data. Then, the whole
tree stores i+ 1 bytes of data. In any left-max-data tree where the root has more than
two children, the left child is a max-data tree and holds the maximal number of bytes any
left-perfect k-ary tree of depth lower than d can hold; see Lemma 2.23 and Definition 2.15.
That is, i+ 1 is the minimum number of bytes that cannot be held in a left-perfect tree
with a depth lower than d. T is a min-data tree.

Part 3: Let T be a left-max-data tree where the root is an inner node with only one child.
Then, the subtree induced by this child is a tree with smaller depth holding the same
number of bytes. T is not a min-data tree.

Part 4: Let T be a left-max-data tree where either the root has more than two children or
the second child of the root holds more than one byte. In both cases, T can be transformed
to a tree T ′ holding a smaller number of bytes that still cannot be held in a tree with
smaller depth. If the root has more than two children, we can remove them and let T ′

be the tree consisting of the root node and the subtrees induced by the first two children
of the root node. If the subtree induced by the second child of the root holds more than
one byte, it can be replaced with a subtree that holds only one byte. In both cases, the
number of bytes held in T ′ is larger than the number of bytes held in the subtree induced
by its first child. Since its first child induces a max-data tree by Lemma 2.23, this first
child holds the maximal number of bytes that can be held in a tree with depth d− 1; see
Definition 2.15. That is, T is not a min-data tree.

14 2. Datastructure Theory

2.8 Space Overhead

Balanced left-max-data trees store a certain amount of data with little space overhead. In
this section, we show that in a tree of depth d, they store at most d nodes more than the
lower bound for k-ary trees. Furthermore, we show that when compared to only storing
the data itself, the space overhead introduced by inner nodes can be approximated with

1
k−1 , which is 0.05% in the reference implementation.

The following Lemma 2.31 establishes a lower bound for the number of nodes any k-ary
tree needs to store a certain number of leaves. Lemma 2.32 shows that perfect k-ary trees
reach this lower bound.

Lemma 2.31
A k-ary tree T with ` leaves, the number of nodes is at least

n ≥ k`− 1

k − 1

Proof When building a k-ary tree on top of ` leaves, the leaves can be seen as a forest F
of ` trees. They are iteratively merged bottom-up until there is only one tree left in the
forest. Each merge step adds the merged tree to F and removes at most k trees from F .
That is, it shrinks the size of F by at most k−1. The final number of internal nodes is equal
to the number of merge steps, because each such merge step introduces an internal node.
That is, the number of merges should be minimal. This is achieved by having each step
remove as many trees from F as possible, leaving fewer trees for future merge operations.
So as long as F contains at least k trees, each step shrinks the size of F by k − 1. In
the beginning, the size of F is a0 := `. After step i, the size of F is ai = ai−1 − (k − 1).
Resolving this recursive formula results in ai = `− (k − 1) · i. This is done until ai ≤ 1,

which happens for i ≥ `−1
k−1 . So in total, at least

⌈
`−1
k−1

⌉
merge steps are needed, which

means the tree has at least that many inner nodes. The lower bound for the total number

of nodes is n ≥ `+
⌈
`−1
k−1

⌉
≥ `+ `−1

k−1 = k`−1
k−1 .

Lemma 2.32
A perfect k-ary tree T with ` leaves has exactly n = k`−1

k−1 nodes.

Proof Let d be the depth of T . Level i has ni = ki nodes, which means that there are
n =

∑d
i=0 k

i = 1−kd+1

1−k nodes in total. According to Lemma 2.8, the number of leaves is

` = kd. That is, n = 1−k`
1−k = k`−1

k−1 .

Using Lemmata 2.31 and 2.32, a perfect k-ary tree storing ` leaves has the minimal number
of nodes among all k-ary trees storing ` leaves. In the following, we establish an upper
bound for left-max-data trees and compare this upper bound with the theoretical lower
bound for k-ary trees.

Lemma 2.33
A balanced left-perfect k-ary tree of depth d with ` leaves has at most n ≤ k`−1

k−1 + d nodes.

2.8. Space Overhead 15

Proof Let T be a balanced left-perfect k-ary tree of depth d with ` leaves. Let ni be
the number of nodes on level d− i. That is, n0 is the number of nodes on the leaf level
with n0 := `. For any non-leaf level, all nodes except for the rightmost one have exactly k
children; see Lemma 2.12. This implies the recursive formula

ni =
⌈ni−1

k

⌉
≤ ni−1

k
+
k − 1

k

Solving this recursive formula results in

ni ≤
`

ki
+

i∑
j=1

k − 1

kj
=

`

ki
+
k − 1

k

i−1∑
j=0

1

kj
=

`

ki
+
k − 1

k
· 1− 1

ki

1− 1
k

=
`

ki
+

(k − 1)(1− 1
ki

)

k − 1
=
`− 1

ki
+ 1

The total number of nodes is the sum over all levels

n =

d∑
i=0

ni ≤
d∑
i=0

(
`− 1

ki
+ 1) ≤ d+ 1 + (l − 1)

d∑
i=0

1

ki
= d+ 1 + (l − 1)

1− (1
k)d+1

1− 1
k

Since T is a balanced left-perfect k-ary tree, the left child of the root induces a perfect
k-ary tree. That is, the left child stores kd−1 leaves. The other children store at least one
leaf or would not exist. So ` ≥ kd−1 + 1, which means kd−1 ≤ `− 1 or kd+1 ≤ k2(`− 1).
Using that results in

n ≤ d+ 1 + (l − 1)
1− (1

k2(`−1)
)

1− 1
k

=
k`− 1

k − 1
+ d− 1

k2 − k ≤
k`− 1

k − 1
+ d

Lemma 2.33 shows that balanced left-max-data trees use at most d more nodes than the
theoretical lower bound for k-ary trees. However, this theoretical lower bound for k-ary
trees already uses inner nodes and therefore has more overhead compared to storing only
the data itself. In the following, we show that this overhead is quite small.

The depth of the tree is d = dlogk(`)e, which is a minor term in the formula of Lemma 2.33.
For any practical purposes, d is a small constant with d ≤ 3. Therefore, the space overhead
can be estimated by using the formula n ≈ k`−1

k−1 . Calculating the relative space overhead
results in

n− `
`
≈

k`−1
k−1 − `

`
=

`− 1

k`− ` =
1− 1

`

k − 1
≤ 1

k − 1

The higher k is chosen, the less overhead there is. However, since inner tree node have to
be stored in a block, a higher k means a higher block size. Because of other performance
factors, the block size should not be chosen too large. In our experiments, k = 2048 had
the best runtime performance, which means there is a worst case overhead of

1

2047
≈ 0.05%

Because the blob size might not be divisible by the number of bytes one leaf can store, the
last leaf has to be allowed to store less bytes than it could. This leads to an additional
additive overhead of the size of one block.

16 2. Datastructure Theory

2.9 Random Access

One goal for the datastructure is to have fast random accesses. This section describes
how this is achieved. For a random access, the tree needs to be traversed from the root to
the leaf containing the accessed byte. When following this path, properties of balanced
left-max-data trees can be used to decide into which child to descend.

For that, each node K stores the depth of the subtree induced by K and the algorithm
uses the following Lemma 2.34.

Lemma 2.34
Let T be a balanced left-max-data tree with depth d, which can store L bytes per leaf. Let
C1, . . . , Cn be the children of its root node. Then the subtrees induced by C1, . . . , Cn−1

store L · kd−1 bytes each.

Proof Lemma 2.23 implies that the subtrees induced by C1, . . . , Cn−1 are max-data trees.
Their depth is d′ := d− 1. According to Lemma 2.20, a max-data tree of depth d′ stores
L · kd′ bytes.

Let T be a balanced left-max-data tree with depth d, which can store L bytes per leaf and
N bytes in total. Let C1, . . . , Cn be the children of its root node. Let the algorithm be run
for a random access to the byte with index m. Then using Lemma 2.34, this byte is stored
in the subtree induced by child Ci with

i :=
⌊ m

L · kd−1

⌋
Using this formula, the algorithm can follow the path from the root to the leaf containing
the byte with index m by accessing d blocks. Since d = dlogk `e = dlogk

N
L e, it has a

theoretical random access time of O(logN). However, in practice, this access is very
fast and can be seen as constant time. The reference implementation uses k = 2048 and
N = 32KB. That is, for blobs below 64MB, d = 1 is enough. This is probably enough for
most blobs stored in the filesystem. With d = 2, a 128GB blob can be stored and with
d = 3 up to 256TB.

2.10 Resizing

Another goal is to be fast when resizing a blob. This section explains how this goal is
met. We describe how the size of a blob can be queried and introduce Algorithm 1 for
growing and Algorithm 2 for shrinking a blob. In Lemmata 2.35 and 2.36, we prove their
correctness.

2.10.1 Querying Size

First, we explain the way the size of a blob can be queried. Very similar to the way random
access works, this can also be done recursively. Let T be a balanced left-max-data tree
with depth d, which can store L bytes per leaf and N bytes in total. Let C1, . . . , Cn be the
children of its root node. Then, C1, . . . , Cn−1 store L · kd−1 bytes each and the algorithm
recursively descends into Cn to get the number of bytes stored there. Like the random
access algorithm, this is done in O(logN) time.

2.10. Resizing 17

If a faster way to get the blob size is needed, the blob size could be stored in the root node
and updated on each resize. This would however have the disadvantage that the root node
is changed on each resize. If an attacker can coerce the user to resize a blob, they can
figure out which block is the root block of this blob. Not storing the blob size in the root
node and using the recursive algorithm is therefore more secure.

2.10.2 Growing

Algorithm 1 shows how to grow a balanced left-max-data tree T by one byte. It can be
extended to grow a tree by multiple bytes efficiently. The algorithm handles three cases.
Either the last leaf can store an additional byte (case 1), or a leaf has to be added to the

1: R←root node of T
2: L← R, P ← ⊥, d← 0, dP ← 0
3: while L has children do
4: if L has less than k children then
5: P ← L
6: dP ← d
7: end if
8: L←rightmost child of L
9: d← d+ 1

10: end while
11: /* State: L is rightmost leaf. P is lowest right border node with less than k children.

d stores tree depth. dP stores depth of P . */
12: if L is not max-data leaf then
13: Add byte to L . Case 1
14: else if P 6= ⊥ then
15: /* Add a leaf. */ . Case 2
16: C ←create chain of d− dP − 1 inner nodes ending with a one-byte leaf
17: Add C as a child to P
18: else
19: /* It is a max-data tree. Increase tree depth. */ . Case 3
20: R′ ←create copy of node R
21: C ←create chain of d inner nodes ending with a one-byte leaf
22: Overwrite R with a new inner node having children {R′, C}
23: end if

Algorithm 1 Grow a balanced left-max-data tree by one byte. In lines 1-11, the algorithm
finds the rightmost leaf and the lowest right border node P with less than
k children. This is the node where the algorithm could add new nodes
to grow the number of leaves. Lines 12-13 handle case 1, in which the
rightmost leaf is not full yet. The algorithm grows it by one byte and is
done. Lines 14-17 handle case 2, in which there was an right border node
that is not full yet. It adds a new leaf to it, and, because all leaves have
to be on the same level, a chain of inner nodes. Lines 18-22 handle case 3,
in which there was no such right border node. It is a max-data tree. The
algorithm grows the tree by placing a new root node on top of the old one.
Because a blob is referenced by storing the block ID of the root node, these
lines replace the old root node with the new one to keep this ID intact.

18 2. Datastructure Theory

tree. In that case, the tree can either hold another leaf without increasing tree depth (case
2) or it is a max-data tree (case 3). The last case adds an additional root node on top of
the old one. Because trees are referenced by their root nodes and references should not
become invalid, the algorithm actually does not add a root node, but stores the new root
node in the existing root block R while copying the old content of R into a new node R′.

Lemma 2.35
If T is a balanced left-max-data tree before calling Algorithm 1, then it is a balanced
left-max-data tree afterwards.

Proof We describe the three cases separately.

Case 1: In this case, the rightmost leaf is not a max-data leaf. The algorithm added one
byte to the last leaf without changing tree structure or the number of bytes in non-rightmost
leaves. T still is a balanced left-max-data tree.

Case 2: Since P was the lowest inner node with less than k children before, all old children
of P induce max-data trees. The new child induces a path where each node is a rightmost
child of its parent. Since P is at depth dP and the algorithm adds a chain consisting of
d − dP − 1 inner nodes and one leaf to P , the new leaf is at depth d and therefore at
the same level as the other leaves. Since the new chain is added into the leftmost empty
child slot in P , all added children are as far left as possible. The old rightmost leaf was a
max-data leaf, so the only non-max-data leaf is the new rightmost leaf. All together, this
fulfills Definitions 2.10 and 2.21. P still induces a left-max-data tree.

Since P is a right-border node, the path from it to the root consists only of right-border
nodes. Inductively going up this path from P ′ to its parent P ′′, the situation is always
that the P ′ (the rightmost child of P ′′) induces a left-max-data tree and the other children
induce max-data-trees. So P ′′ also induces a left-max-data tree. Continuing this induction
chain to the root node implies that T is a left-max-data tree. Since T was balanced before
and all old children of the root are still present, T is still balanced; see Definition 2.25.

Case 3: Since there is no non-leaf right-border node with less than k children, T was a
max-data tree. The new tree consists of a root node with two children. The first child
induces T , which is a max-data tree. The second child induces a chain of d inner nodes
and a leaf. This leaf is on the same level as the other leaves. Furthermore, each node on
this chain is a rightmost child of its respective parent. All added children are as far left as
possible. The old rightmost leaf was a max-data leaf, so the only non-max-data leaf is the
new rightmost leaf. Overall, this fulfills Definitions 2.10 and 2.21. T still is a left-max-data
tree. Since the new root has two children, T is still balanced; see Definition 2.25.

2.10.3 Shrinking

The algorithm for shrinking a balanced left-max-data tree by one byte is very similar
to the algorithm for growing it; see Algorithm 2. In line 12, the most important part
to understand the idea of the algorithm is the check whether L is not a min-data leaf.
Checking L = R is for handling the corner case where a one-byte tree is shrunk to zero
bytes. A one-byte leaf is a min-data leaf and usually the algorithm would not shrink it to
zero bytes but instead remove the whole leaf, which is not what the algorithm should do in
this corner case.

The following Lemma 2.36 shows the correctness of the algorithm.

2.10. Resizing 19

Require: T stores at least one byte
1: R←root node of T
2: L← R, P ← ⊥, d← 0, dP ← 0
3: while L has children do
4: if L has more than one child then
5: P ← L
6: dP ← d
7: end if
8: L←rightmost child of L
9: d← d+ 1

10: end while
11: /* State: L is rightmost leaf. P is lowest right border node with more than one child.

d stores tree depth. dP stores depth of P . */
12: if L = R ∨ L is not min-data leaf then
13: Remove byte from L . Case 1
14: else
15: /* Remove a leaf. */ . Case 2
16: Remove subtree induced by rightmost child of P
17: if R has only one child then
18: /* Decrease tree depth. */
19: Overwrite R with its child
20: end if
21: end if

Algorithm 2 Shrink a balanced left-max-data tree by one byte. Lines 1-11 find the
rightmost leaf and the lowest right border node with more than one child.
This is the node where the algorithm could remove the rightmost child to
shrink the tree by exactly one leaf. Lines 12-13 handle case 1, in which the
rightmost leaf stores more than one byte. The algorithm shrinks this leaf
by one byte and is done. Lines 14-20 handle case 2, in which a leaf has to
be removed to shrink the tree. Lines 17-20 take care that the tree stays
balanced. If after the operation the root node has only one child left, it
decreases the tree depth by replacing the root node with its child.

Lemma 2.36
If T stores at least one byte and is a balanced left-max-data tree before calling Algorithm 2,
then it is a balanced left-max-data tree afterwards.

Proof We describe the two cases separately.

Case 1: If L = R, then the tree consists of exactly one node, and this node is a leaf. Since
the precondition is that the tree stores at least one byte, this leaf stores at least one byte.
It can be shrunk by one byte. If L is not a min-data leaf, the same is true. In both cases,
the tree structure was not changed and no non-rightmost leaves have been changed. T is
still a balanced left-max-data tree.

Case 2: This case is only executed if L 6= R, which means the root node has children, and
L is a min-data leaf. To shrink the tree by one byte, the algorithm removes that leaf and
all unnecessary inner nodes. Since T is balanced, the root node has at least two children.

20 2. Datastructure Theory

That is, there is a P 6= ⊥ which is the lowest right-border node with more than one child.
After removing its rightmost child, P still induces a left-max-data tree.

Since P is a right-border node, the path from it to the root consists only of right-border
nodes. Inductively going up this path from P ′ to its parent P ′′, the situation is always that
the P ′ (the rightmost child of P ′′) induces a left-max-data tree and the other children induce
max-data-trees. Thus, P ′′ also induces a left-max-data tree. Continuing this induction
chain to the root node implies that T is a left-max-data tree.

It remains to show that T is balanced. Assume T is not balanced anymore after removing
the rightmost child of P , that is, R has only one child. Since T was balanced before, the old
root had more than one child and the leftmost child induced a perfect k-ary tree T ′. Now
the root has only one child left which leads to T ′. In this case, lines 17-20 replace T with
T ′, so in the end T is a perfect k-ary tree, which is balanced according to Lemma 2.27.

3. Cryptography Basics

This chapter introduces some cryptography basics. We introduce block ciphers, some
modes of operation and some security definitions. Many definitions in this chapter are
taken from the book of Katz and Lindell [KL08].

Ciphers that are secure on an information-theoretic level are difficult to use in practice. For
ciphers that are not secure on an information-theoretic level, the ciphertext still contains
information about the plaintext which allows an attacker to verify keys. So they always
have a small probability of guessing the correct key. However, this probability can be so
small that it is negligible. To define, which probabilities are acceptable, we define the
concept of negligible functions. A negligible function is a function that shrinks faster than
any polynomial. Using this, the attacker is allowed to have a success probability of negl(k)
where negl is a negligible function and k is the security parameter; i.e. key size.

Definition 3.1 (Negligible Function)
A function negl is negligible if for every polynomial p there exists an N such that for all
integers n > N it holds that |negl(n)| < 1

p(n) .

3.1 Security Definitions

For security proofs, it has to be defined what a secure system is and what an attacker
is capable of. For this, a security goal and an attacker model are defined. The security
goal can for example be to keep a specific message confidential. Or even stronger, it can
be to keep the attacker from getting a single bit of information about the message. The
goal can also be to ensure integrity of a message. The other point to consider is the
attacker model. If there are no time constraints for attackers, then an attacker testing
all possible keys is successful against every cryptographic scheme that is not secure on an
information-theoretic level. Known solutions for security on an information-theoretic level
bring a lot of disadvantages as well, so this is usually not wanted. Neither is it needed,
because real world attackers are not able to use that much time.

3.1.1 Security Goals

Security goals are often formulated as games. In this section, we describe the two most
common goals for encryption, namely confidentiality and integrity.

22 3. Cryptography Basics

Game Attacker
m1,m2

choose random
b ∈ {1, 2}

c := Enc(mb)

b, b′

b′

c

Win Condition: b = b′

Figure 3.1 Indistinguishability game. An Attacker chooses two plaintexts m1,m2. One of
these is encrypted and the ciphertext sent to the attacker. The attacker wins
if it can tell which plaintext was encrypted. Oracle queries are not shown.

In the following, we define two confidentiality goals, namely indistinguishability and non-
malleability. Later in Section 3.1.3, we define security goals for integrity.

Indistinguishability

When the security goal is to keep confidentiality, commonly the game of indistinguishability
is used. An attacker can provide two plaintext messages m1,m2 and the game encrypts
one of them at random and gives it to the attacker. They should then be unable to tell
which of the messages was encrypted. In practice, this means that an attacker cannot get
a single bit of information about the plaintext. The game is illustrated in Figure 3.1. In
the end, the attacker chooses b′, their guess of which message was encrypted. The attacker
wins the game if b = b′. A blindly guessing attacker wins the game in half the cases, so we
define the advantage of an attacker A as

AdvIND(A) := Pr[b = b′]− 1

2

The system is called indistinguishable, if the advantage of the attacker is negligible according
to Definition 3.1.

Non-Malleability

For a stronger security goal, the game of non-malleability can be used. In Section 3.1.4,
we show that non-malleability implies indistinguishability. There exist various equivalent
definitions for non-malleability. We describe the definition of Bellare et al. [Bel+98].

For non-malleability, an attacker should not be able to modify a ciphertext c = Enc(m) in
a way that the modified plaintext m′ has some meaningful relation to the original plaintext
m. So non-malleability can also be used as a weak security definition for integrity. With

3.1. Security Definitions 23

Game Attacker
Distribution D

choose random
m1,m2 ← D
c := Enc(m1)

c

−→c (c /∈ −→c); Relation R

−→m = Dec(−→c)

m1,m2,−→m

Figure 3.2 Non-malleability game. An attacker determines a plaintext distribution of
which the game draws two plaintexts, m1,m2. m1 is encrypted and the
ciphertext sent to the attacker. The attacker wins if it can give a vector of
new ciphertexts −→c and a relation R that relates their plaintexts to m1 but
not to m2. Oracle queries are not shown.

non-malleability, ciphertext manipulations are not necessarily recognized, but it is ensured
that the resulting plaintext does not make any sense.

Figure 3.2 illustrates the game that works as follows: The attacker chooses a distribution
D over the possible plaintexts and gives it to the game. The distribution must be valid,
which means it gives non-zero probability only to plaintexts of the same length. The game
draws two plaintexts m1,m2 according to this distribution, encrypts m1 and sends the
ciphertext c to the attacker. Then, the attacker chooses a vector −→c of ciphertexts and
sends it back to the game. The challenge c is not allowed to be contained in −→c . Also, all
ciphertexts in −→c must be decryptable. Let n := |−→c | be the number of entries in −→c . The
attacker also chooses and sends the description of an arbitrary n+ 1-ary relation R defined
on plaintexts. The game decrypts the entries of −→c individually to −→m and checks whether
R(m1,

−→m) or R(m2,
−→m). The attacker wins the game, if the probability for R(m1,

−→m) is
significantly different than the probability for R(m2,

−→m). If they win, it means that the
attacker could forge encrypted plaintexts −→m while knowing their relation to the challenge
plaintext m1. The advantage of an attacker A is defined as

AdvNM(A) := |Pr[R(m1,
−→m)]− Pr[R(m2,

−→m)]|

The system is called non-malleable, if the advantage of the attacker is negligible according
to Definition 3.1.

3.1.2 Attacker Models

An attacker can have different capabilities. All attackers have in common, that they have
to be probabilistic polynomial time algorithms. That is, they can use polynomial time

24 3. Cryptography Basics

and a random generator. The random generator is important, because for a scheme to be
insecure, attackers do not have to succeed every time. It is already insecure if an attacker
succeeds with non-negligible probability. For the attacker, this is easier to achieve if they
can use randomized algorithms.

Chosen Plaintext Attack (CPA)

In the CPA (chosen plaintext attack) model, the attacker gets an encryption oracle. Before
sending plaintexts m1,m2 to the distinguishability game (or the distribution D to the
non-malleability game), they can send an arbitrary number of requests to the encryption
oracle which then encrypts them and returns the corresponding ciphertexts. They are even
allowed to encrypt m1 and m2. Because of this, any deterministic algorithm cannot be
safe against such an attacker. The attacker is also allowed to do some calculations between
oracle requests, they do not have to send all oracle requests at once. The number of
requests is implicitly polynomially bounded because of the time restriction on the attacker.

Giving an attacker an encryption oracle seems to be too powerful and unnecessary at
first, but it is a security advantage if the system can be proven secure against a stronger
attacker. Furthermore, an attacker in practice actually often has an encryption oracle. In
many security protocols, an attacker can make another party encrypt certain plaintexts
(for example a greeting message with the attackers name in it) and intercept the results.

This attacker model can be combined with the security goals to IND-CPA or NM-CPA to
get indistinguishability or non-malleability against attackers with an encryption oracle.

Nonadaptive Chosen Ciphertext Attack (CCA1)

In the CCA1 (nonadaptive chosen ciphertext attack) model, the attacker is stronger than in
the CPA model. They get an encryption and a decryption oracle. Before sending plaintexts
m1,m2, or the distribution D, they can send an arbitrary number of requests to encryption
and decryption oracles, encrypting and decrypting the given plaintexts or ciphertexts as
wished. Any system that is secure against a CCA1 attacker is also secure against a CPA
attacker, because a CCA1 attacker has any capabilities a CPA attacker has.

For many symmetric encryption schemes, encryption and decryption are identical algorithms.
In that case, encryption and decryption oracles are identical and security against IND-CCA1
(NM-CCA1) is equivalent to security against IND-CPA (NM-CPA).

Adaptive Chosen Ciphertext Attack (CCA2)

If the attacker should be even stronger, the CCA2 (adaptive chosen ciphertext attack) model
can be used. The attacker can use their encryption and decryption oracles at any time,
even after they received c from the game. They can however not query the decryption
oracle for c, otherwise the game becomes trivial. This is the strongest attacker model
defined here. Any system that is secure against a CCA2 attacker is also secure against a
CCA1 or CPA attacker, because a CCA2 attacker has any capabilities the other attackers
have.

3.1. Security Definitions 25

Game Attacker

m := Dec(c)

m
Win Condition:

m 6= ⊥ ∧m never was oracle input

m

c

Enc(m)

O
ra
cle

q
u
eries

Figure 3.3 Game for INT-PTXT security. After using an encryption oracle, an attacker
has to fake a valid ciphertext c that decrypts to a plaintext that never was
oracle input.

3.1.3 Integrity

Non-malleability ensures that an attacker cannot forge a meaningful plaintext. However,
attackers can still forge non-meaningful plaintexts. The goals of the security definitions in
this chapter is to entirely prevent an attacker from forging messages. This can for example
be implemented using Message Authentication Codes [Bla00]. The security definitions in
this section only provide integrity, not confidentiality. A scheme sending the unencrypted
plaintext together with a good Message Authentication Code can achieve the integrity
definitions, but not any of the confidentiality definitions we introduced.

Integrity of Plaintexts (INT-PTXT)

The goal of INT-PTXT (Integrity of Plaintexts) is to prevent forged plaintexts. That is,
every ciphertext that validly decrypts has to decrypt to a plaintext that was previously
encrypted knowing the secret key.

The game is illustrated in Figure 3.3. In the INT-PTXT game, an attacker gets an encryption
oracle and can encrypt an arbitrary number of plaintexts. The attacker is also allowed to
do some calculations between oracle requests, it does not have to send all oracle requests
at once. Once it is ready, it sends a ciphertext c to the game. The game is won, if the
ciphertext decrypts successfully to a plaintext that was not previously sent to the encryption
oracle. With M being the set of plaintexts encrypted by the oracle, the advantage of an
attacker A is defined as

AdvINT-PTXT(A) := Pr[Dec(c) 6= ⊥ ∧ Dec(c) /∈M]

Integrity of Ciphertexts (INT-CTXT)

The INT-PTXT definition ensures that if a decryption is successful, it decrypts to a plaintext
that was previously encrypted knowing the secret key. It is still possible for an attacker to

26 3. Cryptography Basics

Win Condition:
m 6= ⊥ ∧ c never was oracle output

Game Attacker

m := Dec(c)

m

m

c

Enc(m)

O
ra
cle

q
u
eries

Figure 3.4 Game for INT-CTXT security. After using an encryption oracle, an attacker
has to fake a valid ciphertext c that never was oracle output.

forge a new ciphertext, as long as it decrypts to a previously encrypted plaintext. To also
prevent that, INT-CTXT goes a step further and prevents any kind of forgery.

The game works very similar to the INT-PTXT game and is illustrated in Figure 3.4. The
only difference is the win condition. The INT-CTXT game is won, if the ciphertext decrypts
successfully and is different to all ciphertexts output by the encryption oracle. With C
being the set of ciphertexts output by the oracle, the advantage of an attacker A is defined
as

AdvINT-CTXT(A) := Pr[Dec(c) 6= ⊥ ∧ c /∈ C]

3.1.4 Relations

This section introduces some relations between the security definitions introduced.

atk-CCA2⇒ atk-CCA1⇒ atk-CPA

As stated before, a cryptographic scheme that is secure against a CCA1 attacker is also
secure against a CPA attacker, because the CCA1 attacker can do everything a CPA attacker
can do. The same argument holds for CCA2 and CCA1.

NM-atk⇒ IND-atk

A more interesting result is that security against non-malleability implies security against
indistinguishability. An attacker who can recognize plaintexts can also use the encryption
oracle to generate a plaintext that has a certain relation to the recognized plaintext
[Bel+98].

IND-CCA1 6⇔ NM-CPA

There is no relation between IND-CCA1 and NM-CPA. There are cryptographic schemes
fulfilling either of them without fulfilling the other [Bel+98].

3.2. Block Ciphers 27

IND-CCA2⇒ NM-CCA2

IND-CPA does not imply NM-CPA and neither does IND-CCA1 imply NM-CCA1. How-
ever, an attacker who wins the NM-CCA2 game, can modify ciphertexts while knowing
a relation between them. Using this, they can win the IND-CCA2 game by transforming
the challenge c, letting the decryption oracle decrypt it, and checking the relation. That
is, IND-CCA2 implies NM-CCA2 and therefore also IND-CCA1, NM-CCA1, IND-CPA and
NM-CPA [Bel+98]. So IND-CCA2 (or NM-CCA2) is the strongest confidentiality definition
among those we defined. If a system is IND-CCA2 secure or NM-CCA2 secure, it also fulfills
all other confidentiality definitions.

INT-CTXT⇒ INT-PTXT

If an attacker cannot forge any valid ciphertexts, it also cannot forge ciphertexts decrypting
to new plaintexts. That is, INT-CTXT implies INT-PTXT [BN08].

INT-CTXT ∧ IND-CPA⇒ IND-CCA2

Given a scheme that is IND-CPA and INT-CTXT secure, then it is also IND-CCA2 secure
[BN08]. That is, to get an IND-CCA2 secure scheme, it is enough to take an IND-CPA
secure scheme and add authentication to make it INT-CTXT secure. This is especially
useful, since IND-CCA2 is the strongest of our confidentiality definitions.

3.2 Block Ciphers

A block cipher encrypts and decrypts blocks of data. In our definition, it encrypts plaintexts
with n bytes to ciphertexts with n bytes using k bytes as key. This section is based on the
definitions in the book of Katz and Lindell [KL08] with minor changes.

For an ideal cipher, without the key, a ciphertext should not be distinguishable from a
random sequence of bytes of the same length. Since this should be true for any encrypted
plaintext, encryption with a fixed key should ideally be a random function. Because block
ciphers encrypt fixed-size blocks into blocks of the same size, it is an endofunction. And
since encryption should be reversible, it is a bijective endofunction. That is, encryption
should ideally be a random permutation. Since random permutations are hard to construct,
we define pseudorandom permutations, a class of permutations that can be distinguished
from random permutations only with negligible probability.

Definition 3.2 (Pseudorandom Permutation)
Let A be any set and f : A→ A be a random permutation. A pseudorandom permutation
is F : A→ A with the following conditions: F and F−1 are computable in polynomial time
and for any probabilistic polynomial-time distinguisher D, there exists a negligible function
negl such that:

|Pr[D(f) = 1]− Pr[D(F) = 1]| ≤ negl(n)

For any fixed key, the block cipher should be a pseudorandom permutation. This leads to
the following definition of block ciphers.

Definition 3.3 (Block Cipher)
Let n ∈ N be the block size and m ∈ N the key length. A block cipher is F : {0, 1}m →
({0, 1}n → {0, 1}n) where for any k ∈ {0, 1}m, F(k) is a pseudorandom permutation. To
simplify notation, we define Fk := F(k).

28 3. Cryptography Basics

m1 m2 m`

c1 c2 c`

Fk Fk Fk

Figure 3.5 Block cipher Fk in ECB mode. Each block is encrypted individually.

A plaintext block p ∈ {0, 1}n can be encrypted by computing Fk(p) and a ciphertext block
c ∈ {0, 1}n can be decrypted by computing F−1

k (c).

In cryptographic theory, it is not proven that such block ciphers do exist. For common
block ciphers like AES, the prevailing assumption is that they fulfill this definition, but this
is nonetheless an assumption. Security proofs in this thesis also rely on this assumption.

3.3 Modes of Operation

A block cipher itself only operates on fixed size blocks and is deterministic. It being
deterministic significantly reduces security and it operating on fixed size blocks yields bad
usability. Both problems can be solved by using block ciphers in certain modes of operation
as presented in this section. All modes presented have the task of encrypting a plaintext
consisting of an arbitrary number ` of n-byte plaintext blocks m1, . . . ,m` into ciphertext
blocks c1, . . . , c`.

3.3.1 Electronic Codebook Mode (ECB)

The simplest—but insecure—idea to encrypt arbitrarily sized data is to encrypt each mi

individually; see Figure 3.5.

∀i ∈ {1, . . . , `} : ci := Fk(mi)

This mode is called Electronic Codebook Mode, because each block can independently be
looked up from a codebook containing the block cipher evaluations.

The main security issue with this approach is that encryption of a block is deterministic
and depends only on the key and on the block itself. That is, if the same plaintext block is
encrypted with the same key, it results in the same ciphertext block. If a chain of plaintext
blocks is encrypted where some plaintext blocks are equal, the corresponding ciphertext
blocks are also equal. This way, an attacker can easily recognize whether the plaintext has
repetitions. Furthermore, plaintext structure stays intact; see for example the picture in
Figure 3.6, which was encrypted in ECB mode and CBC mode for comparison. The intact
structure also allows statistical attacks like an analysis of the frequency of certain blocks.

Because ECB mode is deterministic, it cannot be IND-CPA secure. An attacker can always
choose m1,m2, encrypt them with an encryption oracle to get their deterministic ciphertext
c1, c2, and use them to later recognize which of the plaintexts was encrypted. Because
it is not IND-CPA secure and all of IND-CCA1, NM-CCA1, IND-CCA2, NM-CCA2 imply
IND-CPA security, ECB mode also does not fulfill any of these security definitions.

3.3. Modes of Operation 29

Original image ECB mode CBC mode

Figure 3.6 An image encrypted in ECB and CBC mode. ECB mode does not hide the
plaintext structure. Source: [Ewi]

m1 m2 m`

c1 c2 c`

IV

c0

Fk Fk Fk

Figure 3.7 Block cipher Fk in CBC mode. The ciphertext of a block is xored to the
plaintext of the next block before encryption.

3.3.2 Cipher Block Chaining Mode (CBC)

The Cipher Block Chaining Mode is more secure, because it is indeterministic and avoids
statistical attacks by chaining blocks together. A (pseudo)random initialization vector (IV)
is xored to the first plaintext block before it is encrypted. For later blocks, the mode xores
the ciphertext of the previous block instead of the initialization vector; see Figure 3.7. The
initialization vector itself is needed for decryption, so it has to be part of the ciphertext
output. This allows the following compact definition.

c0 := IV

∀i ∈ {1, . . . , `} : ci := Fk(mi ⊕ ci−1)

Ciphertexts can be decrypted by reversing the process as in the following formula.

∀i ∈ {1, . . . , `} : mi := F−1
k (ci)⊕ ci−1

It is crucial that the initialization vector must be unpredictable at encryption-time and not
just unique (see the TLS CBC IV attack [Moe04]). This was not the case in earlier SSL/TLS
implementations and allowed the BEAST attack [DR11], a severe security vulnerability.
When the block cipher is a pseudorandom permutation as defined above and CBC mode
is used with a pseudorandom initialization vector, then it is IND-CPA secure, but not
IND-CCA2 and it does not fulfill any non-malleability security definition [Bel+97].

A drawback of CBC mode is that encryption is inherently sequential. To encrypt a block,
all predecessor blocks have to be encrypted. Decryption can be parallelized and it is also

30 3. Cryptography Basics

IV+1 IV+2 IV+ `

r1 r2 r`

IV

c0 c1

m1

c2

m2

c`

m`

Fk Fk Fk

Figure 3.8 Block cipher Fk in CTR mode. Encrypting a running counter generates a
pseudorandom stream which is xored with the plaintext.

possible to decrypt one block from the middle without having to decrypt other blocks. A
bit error in a ciphertext block destroys the block containing it and because of the feedback
loop also the next block.

3.3.3 Counter Mode (CTR)

In this mode, the block cipher works independently from the plaintext and generates a pseu-
dorandom stream, which is then xored to the plaintext; see Figure 3.8. A (pseudo)random
initialization vector (IV) is chosen and a pseudorandom stream ri := Fk(IV + i) generated
by applying the block cipher Fk to increments of that counter. A counter increment is an
integer addition modulo 2n. Then, the ciphertext is produced as an XOR between the
plaintext and the pseudorandom stream.

c0 := IV

∀i ∈ {1, . . . , `} : ci := mi ⊕ ri = mi ⊕ Fk(IV + i)

In CTR mode, as opposed to CBC mode, encryption and decryption are both parallelizable,
because there are no dependencies between the blocks. Furthermore, if a bit error is
happening outside of the IV region, then it only affects this one bit and does not affect any
other bits.

Like CBC mode, given the block cipher is a pseudorandom permutation, CTR mode is
IND-CPA secure, but not IND-CCA2 and it does not fulfill any non-malleability security
definition [KL08].

3.3.4 Galois Counter Mode (GCM)

As described before, flipping a single bit in the ciphertext in CTR mode just flips the same
bit in the plaintext without affecting other bits. This is great for error containment, but is
not desirable for integrity purposes. An attacker could easily flip arbitrary plaintext bits
while the other bits stay intact. In CBC mode, when an attacker modifies a ciphertext bit,
this usually scrambles the content of the corresponding and the next plaintext block. This
is better, but not optimal yet.

3.4. Conclusion 31

Galois Counter Mode [Dwo07] is a mode of operation that not only ensures confidentiality,
but also integrity. It works exactly like CTR mode, but additionally computes an auth
tag that is stored with the ciphertext. On decryption, the auth tag is recomputed and
checked for validity. The computation of the auth tag uses multiplications in the galois field.
Details can be found in Morris Dworkin et al [Dwo07] or David A. McGrew et al [MV04].

By generating the auth tag during encryption, GCM has some advantages over methods
that handle authentication separately from encryption. Firstly, it is easier to get the
implementation right, because it is already built in and the implementer does not have
to think about decisions like whether the auth tag is built for the plaintext or for the
ciphertext. Secondly, it has better performance since GCM can compute the auth tag with
only little overhead additional to the computations it has to do for encryption anyhow.

Since encryption is done with CTR mode, GCM mode is IND-CCA1 secure given that
the block cipher is a pseudorandom permutation. GCM is not proven to be INT-CTXT
secure, but has been proven to be secure in the concrete security model [MV04]. If GCM
mode is assumed to be INT-CTXT secure, it is also IND-CCA2 and NM-CCA2 secure, see
Section 3.1.4.

There are other modes like CCM mode, which combines CTR mode with a CBC-MAC and
is proven to be INT-CTXT and IND-CCA2 secure [Fou+08; BN08], but they have worse
performance than GCM mode, because they calculate the MAC independently from the
ciphertext.

3.4 Conclusion

The goal for CryFS is IND-CCA2 and INT-CTXT security. These are the strongest security
definitions we defined for confidentiality and integrity.

In Section 7, we show that that CryFS fulfills IND-atk security if the underlying block cipher
fulfills IND-atk security (atk ∈ {CPA,CCA1,CCA2}). Under an additional assumption, we
show that the same is true for INT-atk security (atk ∈ {CTXT,PTXT}).

32 3. Cryptography Basics

4. System Design

The goal of this thesis is to design an encrypted filesystem that can be used to synchronize
files and folders between multiple clients securely over the cloud. Each client allows access to
plaintext files, while in the background the clients synchronize with each other, transmitting
only ciphertexts. Our system focuses on the encryption layer and stores ciphertext files
in a folder that can be processed by third party synchronization software like Dropbox,
Rsync, Unison or others. The user workflow looks like they are using the third party
synchronization client directly without encryption. But actually, the synchronization service
does not have to be trusted and is prevented from accessing the plaintext files. Although
the main goal is to work together with third party synchronization tools like Dropbox that
keep a local copy of the synchronized files, it is also possible to modify the system so that
it does not keep a local copy of the ciphertexts but stores the blocks remotely, for example
on NFS or Amazon S3.

It is assumed that the synchronization client is trusted and the attacker is on server side,
because it is difficult to keep a locally installed synchronization client from accessing the
plaintext data when other locally installed applications (like a text editor) should be able
to access them. There are actually solutions to achieve that: the synchronization client
could for example be run under a system user that does not have access to the plaintext
data. Another possible solution is application isolation as announced for future Ubuntu
16.10. However, this is out of the scope of this thesis. Under the assumption of a trusted
client, the system protects against an attacker that controls the synchronization server.

4.1 General Idea

To keep an attacker from getting information about file sizes, everything stored is broken
down into blocks of the same size. Each block is stored in one encrypted real file and
synchronized by the cloud synchronization client. Our implementation has a configurable
block size. According to our experiments, a block size of 8-32KB (depending on the system)
yields the best performance.

Large files are split into multiple blocks. Filesystem metadata and directory structure is
also stored using these blocks.

34 4. System Design

All blocks being the same size is one foundation of the security of the filesystem. An
attacker is not able to see file or directory sizes without being able to decrypt blocks.

4.2 Design Goals

The following is a list of goals we had in mind when designing CryFS. While they describe
an optimal solution, we also explain to which degree these goals are achieved.

Transparency In their daily workflows, users should not notice any difference to
using third party synchronization directly. They should be able to
work on plaintext files as if they were only plaintext files.

Local
Performance

Adding encryption always has a performance impact. However, the
impact should be reasonable to keep the system useful.

Synchronization
Compatibility

The system should work correctly together with third party syn-
chronization clients, e.g. avoid synchronization conflicts.

Backend
Flexibility

The system should be flexible about the way synchronization works.
It should allow storing the encrypted data locally (for third party
synchronization) or directly on remote servers (e.g. NFS, S3).

Platform
Independence

It should run on any device or operating system.

Network
Performance

The amount of needed network transmission should be small when
only little data has changed.

Storage
Efficiency

The amount of space needed (ciphertext size) should not be much
higher than the amount of space used (plaintext size).

Content
Confidentiality

An attacker should not get any information about the file contents.

Content
Integrity

An attacker should not be able to manipulate the stored files without
the user noticing it.

Metadata
Confidentiality

An attacker should not get any information about filesystem meta-
data (e.g. file attributes).

Metadata
Integrity

An attacker should not be able to manipulate filesystem metadata
without the user noticing it.

Structural
Confidentiality

An attacker should not get any information about the size of indi-
vidual files or about directory structure.

Structural
Integrity

An attacker should not be able to manipulate file sizes or directory
structure without the user noticing it.

Partial
Shareability

The user should be able to share a subset of files/folders with a
friend without giving them access to other files.

4.2. Design Goals 35

4.2.1 Achieving the Goals

Transparency

There are multiple ways to achieve transparency. The simplest solution is to implement a
virtual filesystem. There is a real folder containing real files on the hard disk, and based on
them, a virtual folder with virtual files. The ciphertext data could for example be stored
in the real folder and offer a plaintext view in the virtual folder.

When the user accesses the virtual folder, they get their folders and directories en- and
decrypted transparently by the virtual filesystem driver. Many other systems like EncFS,
eCryptFS, TrueCrypt and VeraCrypt take the same approach.

Forward vs. Reverse-Encryption

An alternative approach is reverse encryption, where the plaintext is kept in real files on
the hard disk and the virtual filesystem driver offers a virtual folder with encrypted files.
The synchronization service is pointed to the virtual folder and therefore still synchronize
only the ciphertexts. The advantage of reverse encryption is that accessing plaintext files
is faster because it is a direct hard disk access and there is no encryption envolved.

But it also has some disadvantages. In case the virtual filesystem is not mounted, the
synchronization client might see an empty directory and—assuming the user deleted all
files—delete them on the server. Furthermore, each access from the synchronization client
to one of the encrypted files should yield the same ciphertext or otherwise the client keeps
re-uploading everything. So the system has to keep metadata like initialization vectors
somewhere. Additionally to initialization vectors, the system includes some more random
decisions in the encryption step, for example random block IDs, which also have to be kept
as metadata.

Forward encryption proved to be quite fast in our experiments and we think the added
complexity of reverse encryption is not worth the performance gains. Using forward
encryption, the system is also useable in a broader number of applications. It can for
example also be used for local encryption if the goal is to protect data from someone
stealing the hard disk.

Local Performance

A key point for local performance is using fast encryption algorithms and allowing parallel
encryption when writing multiple files or one large file. This is achieved by encrypting on a
per-block level. When writing to a big file, all touched blocks are independent and can be
encrypted in parallel. This also means that if the user accesses or modifies a small part of a
big file, only the few blocks containing this small part have to be decrypted or re-encrypted.
By keeping a plaintext cache catching multiple changes to the same block, the system takes
care that it does not encrypt more often than actually necessary. Encryption only happens
when the block is thrown out of the cache.

Another aspect to consider is the way the filesystem is connected to the operating system.
A simple way to implement such virtual filesystems is using user space filesystems like
libFUSE1 on Linux/Mac and Dokan2 on Windows. Implementing the virtual filesystem

1http://fuse.sourceforge.net/
2http://dokan-dev.github.io/

http://fuse.sourceforge.net/
http://dokan-dev.github.io/

36 4. System Design

in kernel space has a better performance, but it is harder to implement. CryFS uses the
user space approach, but is implemented in a way that it could be easily ported to other
paradigms.

Synchronization Compatibility

The classic use case is to use a third-party synchronization client like Dropbox that performs
deferred synchronization. When designing a system that should work well with such clients,
some things have to be kept in mind.

Hard disk encryption schemes like dm-crypt3 that store the ciphertext on chunks of disk
space do not offer access to the ciphertext as a file hierarchy. So third party synchronization
clients—which are programmed to synchronize files—cannot use this data.

Some file backed encryption schemes (like eCryptFS4) assume they are the only ones
accessing the real files on the hard disk. This way, they can gain a bit performance by
using a lot of caching. However, third party synchronization clients also access the real
files on the hard disk to synchronize them. If the lifetime of a cache entry is 5 minutes,
then after changing a file, it takes 5 minutes for it to be actually written to the disk and
to be synchronized to other clients. This might be a problem if the user wants to switch
clients and immediately continue working on the same file. Even worse, if another clients
modifies the file during these 5 minutes, only one version survives the conflict. This is why
such systems do not work very well with third party synchronization clients. CryFS still
uses caching for performance, but not as aggressively. By using very short cache timeouts
(< 1 sec), it avoids such conflicts.

Conflicts generally have to be reduced to a minimum. Preventing conflicts where two
clients are modifying the same file at the same time are inherently difficult and out of the
scope of this thesis, but this should be the only type of conflict that can arise. Conflicts
when two clients are modifying the same directory at the same time, for example both
adding a new file to it, can be prevented.

As described before, the system splits large files into many blocks. At first glance, it seems
good to extend this idea by combining multiple small files into a block to prevent wasting
space. CryFS does not do that, because two clients modifying distinct files that are in the
same block would modify the same ciphertext block and cause a conflict. Depending on
the way the third party synchronization client handles conflicts, in the best case one of the
versions survives.

Another important point is that the system has to be able to handle incomplete data. If
no other entity accesses the real files, this cannot happen. But a cloud synchronization
client downloads files from the cloud file by file and the system already sees some blocks
before all blocks are there. So it is important that the system does not crash when there
are only some of the blocks of a file or directory available.

Backend Flexibility

As said before, the classic use case is to store the ciphertext files locally and have them
synchronized using a third-party cloud client. But the system is not restricted to this use

3https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
4http://ecryptfs.org/

https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
http://ecryptfs.org/

4.2. Design Goals 37

case. It is also possible to not store the encrypted data locally at all, but use network
storage or direct cloud storage solutions (e.g. Amazon S3) for this. These storage solutions
often do not have a filesystem interface, but offer to store and retrieve blocks of data using
an API. This is enough for CryFS to work.

Platform Independence

Each operating system has different ways how filesystems have to be implemented. For
CryFS to run on any platform, we offer a generic filesystem implementation using a platform
independent interface, and a layer that maps this interface to platform dependent filesystem
APIs. At the time of writing, this layer is implemented for Linux and Macintosh and we
plan to implement it for Windows in future. We also plan to adapt the Linux layer for
running it on Android.

Network Performance

Systems like TrueCrypt5 or VeraCrypt6 store the whole filesystem in one big file. So if
the user changes one small virtual file, third party synchronization software most likely
reuploads the big file with the whole filesystem. This has a bad performance and makes
these filesystems not useable for cloud synchronization.

CryFS takes care that local plaintext changes cause local ciphertext changes. If a user
changes one virtual file, the cloud synchronization client only has to reupload the ciphertext
belonging to this file. If a user only changes a small part of a large virtual file, the cloud
synchronization client only has to reupload the few blocks containing the related part of
the ciphertext. The last point is also an advantage over EncFS, where a small change in a
large virtual file leads to a re-encryption of the whole virtual file.

Storage Efficiency

As shown in Section 2.8, CryFS has little space overhead. Furthermore, the space needed
is proportional to the space used and it grows dynamically. Filesystems like TrueCrypt,
VeraCrypt or dm-crypt require allocation of a container with the maximal filesystem size
in advance.

Content Confidentiality

CryFS is designed to keep attackers from getting information about the contents stored in
files. This is a quite straightforward design goal and it also is fulfilled by most alternatives,
e.g. EncFS7 if the implementation weaknesses [Hor14] are ignored. However, to the best of
our knowledge CryFS is the only one with a security proof; see Section 7.3.

Content Integrity

With this goal, attackers are kept from being able to modify the content of a file without
clients noticing it. This is theoretically implemented by EncFS, but their implementation is
flawed. The user can enable/disable the functionality with a flag and this flag is stored in a
configuration file, which is by default stored together with the ciphertext. So an adversary
can easily switch the flag to false without the user necessarily noticing it. CryFS provably
fulfills content integrity; see Section 7.4.

5http://truecrypt.sourceforge.net/
6https://veracrypt.codeplex.com/
7http://www.arg0.net/#!encfs/c1awt

http://truecrypt.sourceforge.net/
https://veracrypt.codeplex.com/
http://www.arg0.net/#!encfs/c1awt

38 4. System Design

Metadata Confidentiality

This goal keeps attackers from being able to get information about file metadata like
file attributes or permission bits. Sector level encrypted filesystems usually achieve this,
since they encrypt the whole filesystem information, including metadata. EncFS on the
other hand does not try to achieve this goal. They translate file attributes and any other
metadata 1:1 to the encrypted files. It is their design choice to keep this data visible. CryFS
provably fulfills metadata confidentiality; see Section 7.3.

Metadata Integrity

Similar to before, this goal keeps attackers from being able to modify file metadata without
clients noticing it. CryFS also provably achieves this goal; see Section 7.4.

Structural Confidentiality

CryFS provably keeps attackers from being able to get information about file sizes or
the directory structure; see Section 7.3. Like for Metadata Confidentiality, sector level
encrypted filesystems achieve this by encrypting on a very low level. EncFS keeps the
directory structure intact and only encrypts the file content. They also offer to encrypt
the filename, but file size and directory structure stays unencrypted. As with Metadata
Confidentiality, it is not their design choice to keep this hidden.

Using this information, an adversary can guess a lot about the files stored there. They
can for example easily identify a given public set of files that belong together in a certain
structure, e.g. the contents of an operating system installation medium.

Even if it is not a given public set of files, they can guess the kind of content that is stored
there. A directory where all subdirectories have about 20 files and each file has a size of
about 3 MB is very likely a music CD collection.

Structural Integrity

In CryFS, attackers are provably prevented from modifying the directory structure (moving
files to different directories, changing filenames or sizes, undeleting files, . . .) or rolling the
whole filesystem back without clients noticing; see Section 7.4. EncFS offers to encrypt
filenames depending on the whole file path, which is an approach to keep an attacker from
moving files to different directories. They do not perform integrity checks on filenames and
do not prevent undeleting files or rolling the whole filesystem back to a previous version.

Partial Shareability

This goal is about sharing a subset of files or directories with a friend, without having
to share any other files. This is actually a goal that is hard to achieve. The reference
implementation does not offer this, but we elaborate in Section 4.6.5 how this functionality
could be added.

Comparison

Figure 4.1 shows an overview over the different filesystems and which goals they fulfill.

4.3. Design Overview 39

Legend

+ Fulfilled

– Not fulfilled

CryFS EncFS eCryptFS TrueCrypt, VeraCrypt dm-crypt

Transparency + + + + +

Local Performance + + + + +

Synchronization Compatibility + + – – –

Backend Flexibility + – – – –

Platform Independence + + – + –

Network Performance + + + – n/a2

Storage Efficiency + + + – n/a2

Content Confidentiality + +1 + + +

Content Integrity + – – – –

Metadata Confidentiality + – – + +

Metadata Integrity + – – – –

Structural Confidentiality + – – + +

Structural Integrity + – – – –

Partial Shareability –3 – – – –

1 Current implementation not secure in a cloud environment, but future versions are announced to be.
2 dm-crypt does not allow access to the underlying ciphertexts for network synchronization.
3 Partial Shareability is possible and planned for future versions.

Figure 4.1 Overview over the available filesystems and what goals they fulfill. Dm-crypt
does not offer access to the underlying ciphertexts and can therefore not be
used with cloud synchronization tools. TrueCrypt and VeraCrypt are also
difficult to use in a cloud environment because of synchronization conflicts.
eCryptFS causes undefined behaviour if synchronization software modifies the
ciphertexts. EncFS does not support integrity and does not keep metadata
or directory structure confidential.

4.3 Design Overview

Figure 4.2 shows the general system design. It follows a layered architecture, each layer
only using the layer directly below and offering some functionality to the layer directly
above. In the following, we describe the different layers.

Blockstore This layer is able to store/load data in blocks. Each block has to have the
same size. An implementation can for example store blocks in local files
on the hard disk (to be synchronized by third-party software), or store
blocks directly using a network or cloud service (e.g. NFS or Amazon S3).
This is the layer that achieves the goal of Backend Flexibility.

Blobstore This layer offers the functionality to store arbitrarily sized blobs (“binary
large objects”), which can also be resized. It maps these blobs to the
blocks of a blockstore. Blobs that are larger than a block are split into
multiple blocks.

40 4. System Design

libfuse dokan Kernel-FS · · ·

fs++

Filesystem

Blobstore

Blockstore

Local Files NFS Cloud (e.g. S3) · · ·

Third Party
Synchronization

Figure 4.2 System overview. It follows a layered architecture. The Blockstore layer
allows abstract access to fixed size data blocks that can be stored on different
storage media. The Blobstore layer uses this interface and offers storing
resizeable blobs. The fs++ layer maps the filesystem implementation to
different operating systems.

Filesystem The filesystem layer is responsible for storing files and directories using
blobs in a blobstore. One file is simply one blob. In a simple implementa-
tion, one directory is a list of files stored in one blob, but we also propose
alternative implementations; see Section 4.6.

fs++ This is a library we wrote for CryFS. It allows implementing any filesystem
against one generic interface and then takes care of the platform specifics
and can be used with libfuse, dokan, and so on. In the current state,
only libfuse is supported, but adding other native ways to implement
filesystems should not be a problem. Especially the kernel variant might
be interesting for performance reasons. Thus, fs++ is the layer that
achieves the goal of Platform Independence.

libfuse,
dokan,
Kernel-FS

Each operating system has a different way to implement filesystems. Some-
times even multiple ways. Libfuse is a way to implement a filesystem in
Linux and Macintosh userspace. Dokan is something similar for Windows.
A filesystem can also be implemented as a kernel module or device driver.

4.4. Encryption Layer 41

4.4 Encryption Layer

There are some layers in the design where encryption could be implemented. Our choice is
to encrypt single blocks in the blockstore when they are written to the disk and decrypt
them when they are loaded from the disk. The advantage is that many security properties
are inherited to higher layers. To gain any information about the data stored in a block,
an attacker has to decrypt the block first.

In the reference implementation, there is one global encryption key for all blocks in the
filesystem. This however is the reason it does not achieve the goal of partial shareability.
To achieve partial shareability, blocks could be encrypted with individual keys and the
used key could be stored at the place where the block is linked from, e.g. at the directory
entry pointing to a block containing a file. Since multiple small files are not combined into
one block, each block contains at most one file and the user can share keys to single files.

This approach results in a system, where an attacker cannot read the contents of blocks.
In a static security scenario, i.e. the attacker cannot make the user modify one blob and
see which blocks changed, the distribution of blobs over blocks and the sizes of blobs are
also hidden.

4.4.1 Integrity

It is more difficult to achieve the integrity goals. By using an authenticated cipher (e.g.
AES-GCM) to encrypt the blocks, it is ensured that an attacker cannot modify single
blocks. By storing the block ID in the header of the block, it is ensured that an attacker
cannot replace a block with a valid block that had a different ID originally. To prevent an
attacker from replacing a block with a previous version of the same block, a block stores a
version number in its header. Clients remember the current version number for each block
and check that modifications do not decrease it.

The remaining attack vectors are deleting a block, and re-adding a block the user deleted.
This is prevented by storing a list of IDs of deleted blocks and check the existing blocks
against that list. This list could either be stored locally in each client, or integrity-checked
on the server. Both approaches have problems. If the list is stored locally, a client would
not be able to accept valid deletions of blocks by other clients. If the list is stored remotely
on the server, additional means have to be taken to ensure that a server cannot attack the
integrity of this list by for example rolling it back to an earlier version. Furthermore, it
would need a way to avoid synchronization conflicts when two clients are deleting blocks at
the same time. In the following, we propose two variants to achieve integrity.

Variant 1: Combining Local and Remote Storage

In this variant, each client stores the list of deleted blocks locally, and additionally, it is
stored on the server. To prevent synchronization conflicts, the list on the server is stored
as one file per deleted blob. There is one directory on the server that contains a lot of
small files which each only contain the key of one deleted blob. These files are encrypted
and authenticated. Clients check the server side list for updates and update their local
list, but they only accept new entries. They do not accept deletions or modifications of
entries. This way, a client can delete a block by adding one of these files. An attacker
cannot do that, because they cannot fake the authentication of the file. An attacker also
cannot undelete a block by removing an entry, because clients do not accept that.

42 4. System Design

New clients however cannot rely on the server side list, because the server could give them
an old version. To ensure integrity when adding new clients to the system, the user gives
them a copy of the list via a secure channel. The new client is also given the total number
of existing blocks to prevent the server from deleting some before the new client saw them.

Variant 2: Integrity Blocks

Variant 1 has the disadvantage that it needs a lot of small files on the server and also
has to keep a potentially large list of deleted block IDs locally in each client. Variant 2
proposes an alternative approach. There is not one small integrity file per deleted block,
but there are integrity blocks containing lists of deleted blocks. These integrity blocks are
stored like other blocks of the filesystem on the server and are indistinguishable from them.
They are encrypted, have a random block ID, a fixed size and therefore also a maximal
number of entries. When the maximal number of entries is reached, the client creates a
new integrity block. To prevent synchronization conflicts, a client never adds entries to an
integrity block created by a different client, but instead creates its own integrity block. The
block ID is added to the authenticated header of the integrity block and a version counter
ensures that an attacker cannot roll them back. The clients do not need a local copy of
the list of deleted blocks, but only need to remember the IDs of the integrity blocks, so an
attacker cannot delete them. Although each client has its own set of integrity blocks to
write to, they are indistinguishable from normal filesystem blocks, so an attacker cannot
match them to clients and does not get any information about the number of connected
clients or how many blocks each client deleted.

When adding a new client to the system, it is enough to give them the list of integrity block
IDs with their version numbers, and the total number of blocks via a secure channel. A new
client does not have to be given the whole list of deleted blocks. If filesystem modifications
while adding a new client are prevented, it is also possible to give the new client only a
checksum of this integrity data.

Re-Encryption

From time to time, it might make sense to re-encrypt the whole filesystem with a new
key. In such a case, the list of deleted blocks can be removed, because all old blocks an
attacker could replay do not authenticate with the new key anymore. This might especially
make sense when a new client is added, because then the integrity data does not have to
be passed to the new client via a secure channel. To avoid having to send the new key
to all clients, an indirection can be used. Clients are not initialized with the key to the
filesystem, but with the key to a key block that contains a valid key to the filesystem.
When re-encrypting the filesystem, first a new valid key is added to the key block, then
all blocks are re-encrypted with this new key, and then the original key is deleted. Other
clients reading the filesystem during the process have both keys available in the key block.
If they are modifying the filesystem, they already use the new key for their changes. This
approach also allows encrypting a filesystem with a memorable password instead of a key.
The user can decide to encrypt the key block with a memorable password and only has to
remember this password. Instead of passing a key file to a new client, a new client can be
initialized with that password only and uses it to decrypt the key block and get the key for
the filesystem.

4.5. Blobstore Layer 43

Integrity on Blobstore Level

Instead of ensuring integrity on blockstore level, it could also be done on blobstore level by
storing a list of deleted blob IDs instead of a list of deleted block IDs. This keeps the lists
smaller, because each blob can consist of multiple blocks. However, it makes the system
and the integrity proofs more complicated, because it does not prevent an attacker from
rolling back single blocks. So it has to be ensured that an attacker cannot modify parts of a
blob by rolling back single blocks. Furthermore, the system is easier to understand and to
check for correctness when all security related code is in the same layer. Since an attacker
is prevented from modifying blocks because an authenticated cipher like AES-GCM is used
in the blockstore layer, it makes sense to have the remaining integrity code in the same
layer and not in the blobstore layer.

Conclusion

It is easier to ensure integrity on the blockstore level. Comparing the two variants, there is
a disadvantage of the second variant that when a new block is synchronized to a client,
that client has to check it for whether it is an integrity block, and in case add it to its list.
This is a small performance disadvantage, but we think the performance advantage of not
having many small integrity files as in variant 1 is larger. Furthermore, the second variant
makes it easier to add new clients, because they do not need the whole list of deleted blocks.
In CryFS, integrity is ensured as described in variant 2.

4.5 Blobstore Layer

The blobstore layer is responsible for mapping resizeable blobs onto a blockstore where all
blocks have the same size. This is done using balanced left-max-data trees as described in
Section 2. Each tree node is stored in a block and the leaf blocks contain actual data.

Since blobs represent files in the filesystem, there has to be a fast way for random read
and write accesses and resizing blobs. The corresponding algorithms are described in
Sections 2.9 and 2.10.

An alternative to storing the inner tree nodes in blocks is to keep the inner nodes in the
client only. However, a new client then has to rebuild the tree structure from the leaf
blocks, which can be a costly operation. This is why the reference implementation stores
the inner nodes as actual blocks on the server. Section 2.8 shows that the space overhead
for this is very low.

If a blob is smaller than one block, the space overhead is larger, because the system needs
to allocate at least one block for each blob. To avoid wasting space for small blobs, small
blobs could be merged into one block. This however results in synchronization conflicts
when two clients are modifying two different blobs that happen to be in the same block.
This is why CryFS does not merge small blobs into one block.

As described in Section 4.4, the blockstore already guarantees integrity and confidentiality
for the whole blockstore; i.e. an attacker cannot get information about, modify, delete,
add or rollback blocks. Since all data in the blobs is stored in blocks, these security
properties are directly inherited for the blobstore without additional effort. This is proven
in Section 7.

44 4. System Design

4.6 Filesystem Layer: Storing Directory Structure

A blobstore allows to store arbitrarily resizeable blobs of data. Mapping files onto that
structure is simple. Each file is stored in one blob. Mapping directories needs some more
thought and there are many possible designs.

The following goals are a subset of the goals in Section 4.2 and are especially important when
designing a way to store directory structure. In this analysis, the goal of Local Performance
is divided into two separate subgoals, Fast Path Lookups and Fast Modifications, because
these subgoals are often conflicting and designs have to make a trade off.

Fast
Path Lookups

When the user accesses a file, the system gets its path but needs its
blob ID. This lookup should be fast, even if the file is deeply nested.

Fast
Modifications

Renaming and moving directories and files should be fast.

Synchronization
Compatibility

When two clients modify the same directory (for example both
add a file), third party synchronization clients can easily resolve
this conflict. In the case of CryFS, because directory structure is
mapped to blocks, this is not so simple and needs special thought.
Furthermore, the system should be able to handle data that is
incompletely synchronized.

Storage
Efficiency

The system should use as little space as possible.

Structural
Confidentiality

An adversary should not get any information about the size of
individual files or about the directory structure.

Structural
Integrity

An adversary should not be able to manipulate file sizes or the
directory structure without the user noticing it.

Partial
Shareability

A user should be able to share a subset of files/folders with a friend
without giving them access to other files.

With these goals in mind, we explain some of the designs and discuss their advantages and
disadvantages in the following sections.

4.6.1 Central Directory Structure

A first design approach is to keep directory structure in a central place; i.e. in one central
blob. Figure 4.3 illustrates the concept. This allows fast lookups and also fast renaming
and moving, because all changes happen in that one central blob. The approach has some
confidentiality risks though. If an attacker can make the user move some files and look at
which blocks changed, they can easily figure out which blocks store this central directory
structure blob. Having that, the advantage of distributing this blob over multiple same-size
blocks is lost and it could just as well have been stored in one dynamically sized block. This
might not be a problem if the system could make sure that the directory structure does not
impact the size of this blob, but that is very difficult. A filesystem containing a lot of small
files needs a lot more entries than a filesystem containing few big files. Filename lengths
and the depth of the directory tree are also likely to cause differences in the directory blob

4.6. Filesystem Layer: Storing Directory Structure 45

Blob-ID: D5R. . .

/somedir1/somefile1: TSW. . .

/somedir2/somefile2: GPO. . .

/somedir2/somefile3: CSW. . .

/somefile4: D6J. . .

/somefile5: CXD. . .

Blob-ID: GPO. . .

[file content]

Blob-ID: TSW. . .

[file content]

Blob-ID: D6J. . .

[file content]

Blob-ID: CSW. . .

[file content]

Blob-ID: CXD. . .

[file content]

/

somedir1/

somefile1

somedir2/

somefile2

somefile3

somefile4

somefile5

Represented structure:

Figure 4.3 Example of how directories are stored in a central directory structure. The
blob ID for the central directory structure is “D5R. . . ”. This blob contains
a list of all files in the filesystem, each entry pointing to the ID of the blob
containing this file.

size. By seeing the size of the directory blob, an attacker could distinguish these filesystems.
To prevent that, the system could allocate a max-size directory blob in advance, but that
would waste space and introduce a maximal filesystem size. Another disadvantage of this
basic variant is that there is one central blob (few central blocks) which is modified very
often. This results in synchronization conflicts happening often, even when two clients
modify different directories.

Variant: One Blob per Client

A variant solving the problem of synchronization conflicts is to store one central directory
structure blob per client. Clients can only write to their own copy, but monitor the other
ones. This way, conflicts do not arise in the third party synchronization tool (which would
probably just let one version survive), but the client actually gets both versions and can
resolve the conflict. When a client notices that another client has an additional entry, it
has to decide whether the other client added this entry or whether the client itself deleted

46 4. System Design

Blob-ID: F3R. . .

somefile1: TSW. . .

Blob-ID: EGW. . .

somedir1: F3R. . .

somedir2: 3LJ. . .

somefile4: D6J. . .

somefile5: CXD. . .

Blob-ID: 3LJ. . .

somefile2: GPO. . .

somefile3: CSW. . .

Blob-ID: D6J. . .

[file content]

Blob-ID: CXD. . .

[file content]

/

somedir1/

somefile1

somedir2/

somefile2

somefile3

somefile4

somefile5

Blob-ID: TSW. . .

[file content]

Blob-ID: GPO. . .

[file content]

Blob-ID: CSW. . .

[file content]

Represented structure:

Figure 4.4 Example of how directories are stored in a directory blob structure. The blob
ID for the root directory is “EGW. . . ”. It is a directory blob storing the direct
entries of the root directory with their name and the ID of the blob where
the entry is stored. The blobs containing these entries are either directory
blobs as well, or store file contents.

it. One approach for this is to remember deleted files until the directory structure blobs of
all other clients adopted to the change, another approach is to use version numbers. A
client could also look at whether a blob actually exists to decide whether it was added or
deleted. The confidentiality issue of the base variant also affects this variant.

Conclusion

Although the proposed variant solves the problem with synchronization conflicts, it is a
complex solution. This together with the confidentiality risks mentioned cause that it is
not used by CryFS.

4.6.2 Directory Blobs

A second design is to store a directory as a list of entries in a blob; see Figure 4.4. Each file
blob and each directory blob has a random blob ID. Each directory blob contains a map
from the name of the entry to the blob ID where this entry is stored. A root directory blob
stores the entries of the root directory. To allow fast entry lookups, this map can either be

4.6. Filesystem Layer: Storing Directory Structure 47

a hash map, sorted list, or any other datastructure allowing fast lookups. Path lookups
are slower, because the client has to traverse and decrypt all directory blobs in the path.
Modifications are fast, because renaming or moving a large directory only needs modifying
the entries in the old and the new parent directory blob. To allow partial shareability, each
blob is encrypted with its own key and this key is stored together with the blob ID in the
parent directory blob. Giving someone the key to an arbitrary directory recursively allows
them to decrypt the key to all entries, so they get access to the whole directory subtree.

In the basic variant, this approach cannot handle multiple clients modifying the same
directory. If two clients modify the same directory, only one of the versions survives the
conflict. The client however sees orphaned blobs in this case. If there is a parent pointer
in the header of each blob, clients could resolve synchronization conflicts by re-adding
orphaned blocks to their directories. To fulfill the integrity goal, this requires the blobstore
to ensure that an attacker cannot re-add a deleted blob as described in Section 4.4.1.
However, if the system uses parent pointers to resolve conflicts, the direct parent pointer
approach in Section 4.6.5 is actually better.

The following variants discuss solutions to the disadvantages of the directory blob design,
namely slow path lookups and synchronization conflicts.

Variant 1: Encoding Paths into Blob IDs

A variant achieving fast nested lookups is to make blob IDs not random but deterministic,
namely the encrypted hash of the file path. If the client wants to access a file and has
its path given, it can quickly get its blob ID by hashing and encrypting the path. The
disadvantage of this solution is that modifications become slow. When renaming or moving
a large directory, the system has to give all entries in this subtree a new blob ID, because
their path changed.

Variant 2: Dummy Entries

A variant partly solving the problem with synchronization conflicts is to give directory
blobs a lot of dummy entries, pointing to nonexistent blobs. The directory blob does not
store the entry name itself, only the child blob stores the name. If a client adds an entry to
a directory, it simply chooses one of the dummy entries and creates a blob with that blob
ID, making it a real entry. This does not need to modify the directory blob itself. Deleting
an entry also does not need to modify the directory blob itself, because the blob can simply
be deleted and the directory entry becomes a dummy entry. Since the entry name is not
stored in the directory blob, renaming also does not modify the directory blob. Although
this solves most of the conflict scenarios, there are some remaining. There is a chance that
two clients adding a file to a directory choose the same dummy entry. To make this chance
low, a directory would have to have a lot of dummy entries, making it waste a lot of space.
There is also the possibility of conflicts when a client grows a directory blob to add new
dummy entries because a directory got too large. Clients have to decide about growing
the directory blob indeterministically to avoid two clients doing that at the same time.
Another disadvantage of this approach is that listing directory content is slow, because the
filesystem has to open and decrypt all directory entries to get their names.

48 4. System Design

Variant 3: Implicit Dummy Entries

Taking the last variant further, directory blobs do not actually need to be stored any-
more. Blob IDs can be chosen in a deterministic way, namely as an encrypted hash of
[directory-ID]:[entryindex], being an implicit list representation without explicitly storing it.
Clients adding files choose a random free entry index when adding an entry to a directory.
Deleting an entry can be done by simply deleting the entry blob. This approach has fewer
conflicts, but makes listing directories even slower, because the client has to check all
possible entry indices for whether they exist. This is again a trade-off between probability
of conflicts and performance. To get few conflicts, clients that are adding an entry should
be able to choose from a large range of possible entry indices.

It also makes partial shareability more complicated, because there are no directory blobs
where encryption keys for directory entries could be stored. Furthermore, this requires the
blobstore to ensure that an attacker cannot delete blobs or re-add deleted blobs, otherwise
they could manipulate the directory structure. Such a blobstore is described in Section 4.4.1.
The other variants also need a mechanism to prevent rollbacks, but they do not allow the
attacker to put a directory into a state that never existed in the past. However, if the
blobstore does not prevent this, then this variant allows the attacker to arbitrarily delete
single files or add a subset of old files without the user noticing.

Variant 4: In-Memory Index

A variant combining fast path lookups and fast renaming and moving is to store directory
blobs like in the basic variant, but to keep a local in-memory map from paths to blob IDs
in each client. To notice changes, clients have to periodically rebuild this index, which
costs performance. There is a way to use incremental rebuilds; see the In-Memory Index
variant of Path Headers in Section 4.6.4.

Variant 5: Cache

This is similar to the last variant, but instead of a full index, a last-recently-used cache
is used. Entries expire after a short timeout to avoid synchronization conflicts. When
accessing the same file multiple times, it is already in the cache. When accessing many
files in a nested directory, there still is a benefit because the client does not have to lookup
the blob ID of the directory multiple times. This variant does not solve the problem with
synchronization conflicts. Two clients modifying the same directory still leads to conflicts.

Conclusion

In a directory blob design, partial shareability is easy to implement. Using an in-memory
index or a cache, the design allows for fast path lookups. We prefer a cache to an in-memory
index, because it is easier to implement, does not have a long bootup time, does not need
periodical or incremental rebuilds and uses less memory. Synchronization conflicts remain
a problem, since the proposed dummy entries variants are not perfect solutions and have
their own problems. However, they are only a problem if two clients modify the same
directory. A directory blob design is very easy to implement. This is why the current
implementation of CryFS uses it. We plan to switch to the parent pointer design introduced
below in later versions.

4.6. Filesystem Layer: Storing Directory Structure 49

Real Directory:
/rootdir/EGW. . .

Real File

somedir1: F3R. . .

Real File

somedir2: 3LJ. . .

Real File

somefile4: D6J. . .

Real File

somefile5: CXD. . .
Blob-ID: D6J. . .

[file content]

/

somedir1/

somefile1

somedir2/

somefile2

somefile3

somefile4

somefile5

Represented structure:

Real Directory:
/rootdir/F3R. . .

Real File

somefile1: TSW. . .

Real Directory:
/rootdir/3LJ. . .

Real File

somefile2: GPO. . .

Real File

somefile3: CSW. . .

Blob-ID: CXD. . .

[file content]

Blob-ID: TSW. . .

[file content]

Blob-ID: GPO. . .

[file content]

Blob-ID: CSW. . .

[file content]

Figure 4.5 Example of how directories are stored in a real directory structure. All real
directories are on top level under /rootdir/ and each real directory represents
a (possibly nested) virtual directory in the plaintext filesystem. The root
directory is stored in “/rootdir/EGW. . . ”. Each real directory contains real
files, one file per entry. An entry contains the corresponding file or directory
name and an ID as a pointer to where the entry is stored. In the case of a file
entry, this ID is the blob ID. In the case of a directory entry, this ID points
to another real directory containing the entries of this subdirectory.

4.6.3 Real Directories

The basic idea behind this approach is that third party synchronization clients already solve
the problem of avoiding conflicts when multiple clients are modifying the same directory.
CryFS can use their solution instead of implementing an own one. To use their solution,
directories have to be represented as real directories in the underlying filesystem, the
blockstore abstraction cannot be used for them. However, if done like described in the
following, it still fulfills the security goals.

50 4. System Design

As before, each directory in the filesystem has a blob ID and stores a list of blob IDs as
entries. If the entries were stored together in one file, synchronization conflicts could not
be avoided. So each entry is stored in its own file. A directory is now represented as a
real directory, whose name is the directory blob ID, and this directory contains a lot of
very small entry files, each file only containing the name and the encrypted blob ID of the
entry; see Figure 4.5. These real directories are all on top level, there are no nested real
directories. Instead of storing the encrypted blob ID in the content of the entry file, it can
be used as the entry file’s name, which on most operating systems makes lookups faster. It
has to be encrypted, because an attacker should not be able to see which blobs are the
entries of this directory, since that would allow reconstruction of the directory tree. The
filenames of the entries are not stored in the file blobs, but in these small entry files to
allow faster directory listing. However, clients still have to access one file per entry, so
listing a directory in this design is slow.

So far, this design does not ensure integrity. An attacker can easily remove entries, replace
entries, or add old entries. That can be solved using an integrity list similar to Section 4.4.1.

Variant 1: Dummy Entries

The base variant has the problem that an attacker can see how many directories there are
and how many entries each directory has. To solve the first problem, dummy directories
can be introduced. To solve the second problem, the number of entries in a directory can
be fixed. Each directory has exactly n entries, of which at most m are real entries and at
least n−m are dummy entries. When a client adds a new entry to a directory, it replaces
one of the dummy entries with a real entry. Because it does not change the dummy entry
but deletes it and adds a new entry instead, it avoids synchronization conflicts when two
clients are adding an entry to the same directory. The only conflict that can happen is
that two clients choose the same dummy entry to delete, in which case there is one entry
too much in the directory after both clients finished. This does not hurt correctness. An
attacker can see this way that there are at least two clients working with the directory, but
this is not necessarily something the system wants to hide. If it wants to hide it and an
attacker is not able to see the intermediate state of the filesystem, then the client can delete
a dummy entry whenever it notices there is one too many. Each client periodically and
randomly decides whether they want to fix the number of dummy entries. If two clients
decide to fix the same issue, there is be a dummy entry too few afterwards and the clients
can use the same algorithm to add a dummy entry again.

Because the maximal number of directory entries should not be limited, the system uses
link entries. If a directory has close to m entries, a client can add an indirect entry pointing
to another real directory where the list of entries continues. When two clients decide at
the same time that they have to do this, there are multiple link entries in the directory,
which does not hurt correctness and also does not give an attacker more information. For
very large directories, it might even be desirable to have such a tree structure instead of a
long linked list.

So with this variant, an attacker cannot see the number of directories or the number of
their entries anymore. However, even with dummy directories, they can still distinguish
between the data that stores directories and the data that stores files. Using this, they
might be able to distinguish a filesystem layout where all files are in the root directory
from a very nested filesystem layout with a lot of directories.

4.6. Filesystem Layer: Storing Directory Structure 51

Blob-ID: D6J. . .

Path: /somefile4
[file content]

Blob-ID: CXD. . .

Path: /somefile5
[file content]

Blob-ID: TSW. . .

Path: /somedir1/somefile1
[file content]

Blob-ID: GPO. . .

Path: /somedir2/somefile2
[file content]

Blob-ID: CSW. . .

Path: /somedir2/somefile3
[file content]

/

somedir1/

somefile1

somedir2/

somefile2

somefile3

somefile4

somefile5

Represented structure:

Figure 4.6 Example of how directories are stored in a path header structure. Directories
are not stored, but only file blobs. Each file blob stores its path in the header.
Clients can build a local directory index by scanning over all headers.

Variant 2: Storing Files and Directories Together

To avoid an attacker being able to distinguish between files and directories, real directories
can be merged with file blocks. Instead of storing blocks as files that are independent
from this directory structure, there is one block stored in each real directory. So each real
directory stores a fixed number of small files for directory entries, and additionally, it stores
a larger file which contains one block of file data. If this block is referenced as a directory,
the client only accesses the small files and reads the entries. If this block is accessed as a
file block, the client only reads the larger file.

With this variant, an attacker cannot distinguish between directory data and file data
anymore. However, if a block contains only directory entries or only file data, the system
also has to store the other. That is, if the number of total directory entries and the number
of file blocks has a different ratio than what we expected when designing the system, the
system wastes a lot of space.

Conclusion

In a real directory design, listing directory contents—and therefore also path lookups—are
slow. Path lookups could be made fast using a cache, but this does not help for listing
directory contents, because they can be large. If an attacker should be prevented from
seeing the number of directories or the number of their entries (variant 1 or variant 2), the
design gets complex and possibly wastes a lot of space. If this is not done, then an attacker
can not get the actual directory tree, but still distinguish two filesystems with a different
directory tree. In conclusion, although it sounded like a good idea to have the third party
synchronization client handle synchronization conflicts, this design is not preferable.

4.6.4 Path Headers

In the path header design, each file blob stores its entire path in the header of its blob;
see Figure 4.6. With this approach, renaming and moving large directories takes a lot of

52 4. System Design

time, because the operation has to change the headers of all file blobs in the directory
subtree. Path lookups can be made fast by keeping additional data like an in-memory
index or a cache. This design also requires the blobstore to ensure that an attacker cannot
delete blobs or re-insert deleted blobs, because otherwise an attacker can not only roll back
the whole filesystem, but also delete files or re-insert deleted files to bring the filesystem
into a state it has never been in. A blobstore implementing this integrity is described in
Section 4.4.1

Variant 1: In-Memory Index

In this variant, each client keeps a local cache of path to blob ID mappings. This avoids
synchronization conflicts and allows fast path lookups, but for building this index, clients
have to scan all blobs, which potentially causes a long bootup time. Furthermore, the
client has to keep the index up to date. To avoid periodically scanning all blobs again, an
invariant could be introduced that each change in directory structure causes new blobs to
be created or old blobs to be deleted. This is trivially fulfilled when adding or deleting
files. When a client renames or moves a file, it has to give it a new blob ID. Given this
invariant, the client does not have to periodically scan all blobs, but it only has to keep a
list of blobs it knows and check for added or deleted blobs.

With or without this invariant, blocks could store a boolean flag in their header, specifying
whether they are the root node of a blob. That makes it faster to scan over all blocks and
find and recognize the blobs. So to build the in-memory index, a client could scan over all
blocks, and if it finds a root node, it traverses down to its first leaf to read the blob header,
which contains the path.

This traversing down the tree still needs some time and could be made faster by storing
the first few bytes of a blob in the root node itself. Then, the chance would be quite high
that the path is also stored in the root node itself and the client does not have to traverse
down to the first leaf. Alternatively, the root node could contain a direct link to its first
leaf so at least the client does not have to traverse the whole tree depth down. Another
idea is to not mark the root node but the first leaf with a flag. But then, the blob header
contained in the first leaf has to store the blob ID, because (a) it is needed to build the
in-memory index and (b) for very long paths, the second leaf has to be accessed.

Variant 2: Directory Blobs with Cache

In this variant, the system stores directory blobs additionally to the path in the blob
header. The directory blob variant with a cache is used to keep nested lookup times fast.
This variant avoids a long bootup time, but introduces the possibility for synchronization
conflicts in the directory blobs. However, if a synchronization conflict happens, clients
could always recover from it and rebuild the directory blobs from the file blob headers.

Variant 3: Central Directory Structure

Instead of using directory blobs, the file blob header approach could also be combined with
a central directory structure. This variant also avoids a long boot time. It also introduces
the possibility for synchronization conflicts, which can also be recovered by rebuilding the
central directory structure from the file blob headers. However, using directory blobs is

4.6. Filesystem Layer: Storing Directory Structure 53

still a better idea, because it does not have some few blocks that are accessed on each
modification and therefore synchronization conflicts happen less often. Additionally, a
central directory structure introduces the confidentiality issue that an attacker can get
information about the filesystem by looking at the blob containing the central directory
structure; see Section 4.6.1.

Conclusion

In a path header approach, we need the blobstore to ensure that an attacker cannot delete
or re-insert blobs. However, this is fulfilled by the CryFS blobstore. Path lookups can be
made fast by using an in-memory index or a cache. We prefer a cache to an in-memory
index, because it is easier to implement, does not need periodical or incremental rebuilds
and uses less memory. When using the variant with directory blobs, the long bootup time
is avoided and partial shareability gets possible. Renaming and moving large directories is
slow. This can be solved by storing parent pointers instead of the file paths in the blob
headers, as described in the following section.

4.6.5 Parent Pointers

This design is similar to the path headers design, but instead of the full path, the system
only stores the name and a parent pointer in the blob header; see Figure 4.7. The parent
pointer is the ID of the parent directory blob. Directory blobs exist, but they only contain
the directory name and a parent pointer. They do not store their entries. The advantage
over the path header approach is that renaming and moving large nested directories is
fast, because the operation only has to modify the name or parent pointer of the directory
itself and does not have to look at its entries. Like in the path header approach, nested
lookups can be made fast by keeping an in-memory index, storing entries in directory blobs
or having a central directory structure. The parent pointer design also inherits the need for
relying on the blobstore doing additional effort to ensure integrity from the path header
approach. Regarding the goals, the parent pointer design is strictly better than the path
header design, because it has all its advantages and one disadvantage less.

Allowing Partial Shareability in a Parent Pointer or Path Header Approach

There are two degrees of partial shareability. In an optimal solution, the user is able to
share single files or whole directories. This is the level that is supported by the directory
blob approach. A weaker degree of partial shareability is to allow sharing whole directories
only. In the following, we describe how to implement whole directory sharing in a parent
pointer or path header approach.

In a parent pointer approach, there still are directory blobs, but they only store a parent
pointer and do not store their entries. These directory blobs could be used to store the
unique key that has been used to encrypt the entries in this directory. In a path header
approach, such directory blobs could be introduced. When a client boots up, it only knows
the key for the root directory. From the root directory blob, it gets the keys for the direct
children, but not more. So it has to try each block with each known key in an iterative
process to read the whole directory structure. This could take quite a long bootup time.
If the parent pointer or path header design is implemented in the directory blob variant,
where directory blobs also store their entries, then the bootup time is much faster.

54 4. System Design

Blob-ID: EGW. . .

Parent: ⊥
Name: /

/

somedir1/

somefile1

somedir2/

somefile2

somefile3

somefile4

somefile5

Represented structure:

Blob-ID: F3R. . .

Parent: EGW. . .
Name: somedir1

Blob-ID: 3LJ. . .

Parent: EGW. . .
Name: somedir2

Blob-ID: D6J. . .

Parent: EGW. . .
Name: somefile4
[file content]

Blob-ID: CXD. . .

Parent: EGW. . .
Name: somefile5
[file content]

Blob-ID: TSW. . .

Parent: F3R. . .
Name: somefile1
[file content]

Blob-ID: GPO. . .

Parent: 3LJ. . .
Name: somefile2
[file content]

Blob-ID: CSW. . .

Parent: 3LJ. . .
Name: somefile3
[file content]

Figure 4.7 Example of how directories are stored in a parent pointer structure. Each
file is stored in a blob and stores its name and a parent ID as a pointer to
its parent directory. Directories do not store their entries, but only their
own name and a parent pointer. Clients can build a local directory index by
scanning over all blobs. The root directory is stored in “EGW. . . ”.

Another approach to partial shareability that also allows to share single files is on-demand
re-encryption. All files are encrypted with the same key at first. When sharing a folder, a
client re-encrypts this part with a second key and shares the second key. It also remembers
locally that this part is encrypted with a different key, so it itself is able to continue
accessing it. This is an approach that also allows un-sharing a file by re-encrypting it with
the first key again. The actual implementation is quite complex though. If the client shares
a folder with person A and then afterwards wants to share a subfolder with person B, then
also person A has to be notified and has to get both keys.

Attribute Based Encryption [Goy+06; HW13; LCH13] could be a solution to partial
shareability, but known implementations for attribute based encryption are quite slow. It
might be possible however to give each file a unique encryption key and use attribute based
encryption only to encrypt and store these keys. This is left for future work.

4.6. Filesystem Layer: Storing Directory Structure 55

Legend

++ Fully fulfilled

+ Fulfilled but needs additional effort

– Moderately fulfilled

– – Not fulfilled

F
a
st

P
a
th

L
o
o
k
u
p

s

F
a
st

M
o
d

ifi
ca

ti
o
n

s

S
y
n

ch
ro

n
iz

a
ti

o
n

C
o
m

p
a
ti

b
il
it

y

S
to

ra
g
e

E
ffi

ci
en

cy

S
tr

u
ct

u
ra

l
C

o
n

fi
d

en
ti

a
li
ty

S
tr

u
ct

u
ra

l
In

te
g
ri

ty

P
a
rt

ia
l

S
h

a
re

a
b
il
it

y

Central Directory Structure ++ ++ + ++ – ++ +

Directory Blobs + ++ – ++ ++ ++ ++

Real Directories + + ++ + + + +

Path Headers + – – ++ ++ ++ ++ +

Parent Pointers + ++ ++ ++ ++ ++ +

Figure 4.8 Different design choices for storing the directory structure and the goals
fulfilled by them. A parent pointer design is the best choice. With a bit
additional effort for fast path lookups and partial shareability, it can fulfill all
of the goals.

4.6.6 Conclusion

Figure 4.8 shows an overview of the design alternatives and which goals they fulfill.

A central directory structure has problems with structural confidentiality and real directories
need a lot of effort to implement them with structural confidentiality. The path header
approach is strictly dominated by the parent pointer approach. We think a parent pointer
approach in the variant using directory blobs with a cache is the best solution for representing
directory structure. It fulfills most of the goals. It allows fast nested lookups, fast renaming
and moving and avoids synchronization conflicts. Although the plain parent pointer design
does not support partial shareability without getting the disadvantage of a long bootup
time, the parent pointer design in the directory blob variant solves this problem. The
parent pointer approach is however more complicated to implement, which is the reason
the reference implementation uses a plain directory blob approach. We are planning to
implement the parent pointer approach in a future version.

56 4. System Design

5. System Reference

In this section, we define the storage layout for CryFS. The system is described on a higher
level in Section 4, whereas we describe the implementation details here.

5.1 Config File

The configuration file is kept locally on the client. Some other encrypted filesystems like
EncFS keep it on the server, but that allows attackers to change it and in that specific
case switch off integrity checks. Figure 5.1 shows an example configuration file. It is stored
in JSON format and contains the following settings:

rootblob The ID of the blob containing the root directory.

key The cryptographic key used for encryption, stored as a hexadecimal value.

cipher The cryptographic cipher used, e.g. “aes-256-gcm”.

Supported ciphers are aes-{128,256}-{gcm,cfb}, twofish-{128,256}-{gcm,cfb}, serpent-{128,256}-{gcm,cfb},
cast-256-{gcm,cfb} and mars-{128,256,448}-{gcm,cfb}.

{

"cryfs": {

"rootblob": "7C426C036F5A3CCCD7801365CFAEE4C8",

"key": "D47AADF4112EDFE48D87691ADBE1265253A056DD7CF806463BD7BF705B4F0426",

"cipher": "aes-256-gcm"

}

}

Figure 5.1 A CryFS config file. The rootblob variable stores the blob ID for the root
directory as an entry point for the filesystem. The configuration file also
stores the cryptographic cipher and a hexadecimal representation of the
cryptographic key.

58 5. System Reference

16 bytes block ID The ID of the block. This prevents attackers from replacing a
block with a different block.

uint8 t depth The depth of the subtree with this node as root node.
For leaves, this is 0.

3 bytes not used unused space for byte-alignment (might be used in future ver-
sions).

uint32 t size For internal nodes: number of child nodes.
For leaves: number of bytes stored.

remaining data For internal nodes: pointers to child nodes. Each pointer stores
the block ID of the child node and uses 16 byte.
For leaves: data bytes.

Figure 5.2 Layout of a decrypted block in the tree.

uint8 t magic number For directory blobs: 0x00.
For file blobs: 0x01.
For symlink blobs: 0x02.

remaining data For directory blobs: Directory entries. Each entry has the
layout shown in Figure 5.4.
For file blobs: file content.
For symlink blobs: Target path for the symlink. The
blob-size terminates the string, there is no null byte at the
end.

Figure 5.3 Layout of a blob.

uint8 t child type For directories: 0x00.
For files: 0x01.
For symlinks: 0x02.

null-terminated child name Name of the entry.

null-terminated child ID Blob ID of the entry.

uid t uid POSIX user id flag.

gid t gid POSIX group id flag.

mode t mode POSIX mode flag, i.e. permission bits.

Figure 5.4 Layout of an entry in a directory blob.

The GCM ciphers support integrity, while the CFB ciphers are meant for use cases where
integrity is not needed. Future versions will also support CBC, CTR, CCM and EAX
modes. CCM and EAX are combinations of CTR mode with CBC-MAC respective OMAC
for integrity.

5.2 Block Layout

Each block stores one node of a balanced left-max-data tree and is stored as a real file.
The filename is the block ID. Block IDs are 16 bytes long, represented as a hexadecimal
string with 32 characters.

5.3. Blob Layout 59

Each block is encrypted with the configured encryption scheme. The initialization vector
is prepended to the encrypted data.

When it is decrypted, a block has the layout shown in Figure 5.2.

5.3 Blob Layout

Each blob is one balanced left-max-data tree. The inner node blocks define the order of
the leaf blocks and allow fast accesses and modifications. The ordered leaf blocks store the
data of the blob.

A blob can either store a file, a directory, or a symlink and has the layout shown in Figure 5.3.
In case of a directory blob, the layout of a directory entry is shown in Figure 5.4.

60 5. System Reference

6. Implementation and Evaluation

In this section, we explain the software architecture and design decisions of the reference
implementation. We also provide performance experiments and show that it is fast enough
to be used in practice.

CryFS is implemented using C++ for performance reasons and can be compiled with either
GCC or Clang. For cryptography, the Crypto++1 library is used. It is written in a way
that makes it simple to swap this library for another one, e.g. openssl2. The code is well
covered by test cases to help robustness and stability.

6.1 Software Architecture

The top level architecture follows the top level system design as described in Section 4.3.
Figure 6.1 shows the main components.

The fs++ layer is a library we wrote for CryFS that allows the implementation of a filesystem
against a portable interface. This enables the filesystem to run on different platforms using
libfuse on Linux or Macintosh and dokan on Windows. On the other end of the layer stack,
a blockstore can work on any storage backend. The most common case is storing blocks in
the local filesystem (and maybe synchronize them using third party clients), but it is easy
to implement a storage backend for NFS or S3.

6.1.1 Blockstore

There is a lot of functionality built into this layer. Each functionality is put into its own
sublayer. All sublayers are implementing the same blockstore interface, only accessing
the blockstore layer directly below and providing some additional functionality to the
layer above. Each request passes through all the sublayers. The sublayers are shown in
Figure 6.2.

1https://www.cryptopp.com/
2https://www.openssl.org/

https://www.cryptopp.com/
https://www.openssl.org/

62 6. Implementation and Evaluation

libfuse dokan Kernel-FS · · ·

fs++

Filesystem

Blobstore

Blockstore

Local Files NFS Cloud (e.g. S3) · · ·

Third Party
Synchronization

Figure 6.1 Top level architecture. The Blockstore layer allows abstract access to fixed
size data blocks that can be stored on different storage media. The Blobstore
layer uses this interface and offers storing resizeable blobs. The fs++ layer
maps the filesystem implementation to different operating systems.

OnDiskBlockStore

This blockstore works on local files. It implements the blockstore interface and stores each
block in its own file in a common directory. The filenames are the block IDs. When there
are too many files in the directory and directory lookups become slow, it groups them in
subdirectories by the first few bytes of the block ID.

EncryptedBlockStore

This blockstore works on a base blockstore and adds encryption and integrity checks to it.
A user of this layer works with plaintext data, and this layer then stores the ciphertexts in
the base blockstore.

CachingBlockStore

This blockstore also works on a base blockstore and adds caching functionality. When
a block is returned by the application to this blockstore, it does not return it to the
base blockstore yet, but keeps it in a cache. If the application then requests the same
block again, it delivers it from the cache. Blocks are returned from the cache to the
base blockstore after a timeout or if the maximal cache size is exceeded. In the reference
implementation, a timeout value of 1 second is used, because it ensures fast synchronization
and still has a large performance gain. The performance impact is mostly due to the way

6.1. Software Architecture 63

OnDiskBlockStore

EncryptedBlockStore

CachingBlockStore

ParallelAccessBlockStore

Blockstore

Blobstore

Local Files

Figure 6.2 Blockstore Architecture. It is divided into sublayers. The OnDiskBlock-
Store offers a blockstore interface that stores the blocks on a local hard
disk. EncryptedBlockStore and CachingBlockStore add a cryptography layer,
respective a caching layer to that. ParallelAccessBlockStore deals with race
conditions when accessing the same block at the same time in different threads.

libfuse is implemented on the operating system side. When an application sends a large
read/write request to a libfuse filesystem, the operation is split into suboperations, each
reading/writing a small block. The CryFS implementation then gets a read/write request
per suboperation and can work on them in parallel. However, these block sizes are not
necessarily aligned with the block size of CryFS. This is why many of these suboperations
have to access two CryFS blocks and each CryFS block is accessed by two suboperations.
The cache takes care that this double access happens in memory and CryFS does not have
to write blocks back to the disk just to immediately reload them. This caching layer is
on top of the encryption layer, because performance is better when keeping encryption
operations to a minimum.

ParallelAccessBlockStore

A blockstore interface offers the application to load blocks, perform read/write operations,
and then write them back. If an application loads the same block twice and writes both
back, then the last block wins and the other change is lost. This race condition is solved
by this layer. It also works on a base blockstore and basically only passes through blocks
from this base blockstore, but if the same block is requested twice, then it does not return
two distinct block objects, but the same block object to both. Since the block objects are
implemented threadsafe, the race condition is solved.

6.1.2 Blobstore

This layer is also separated into sublayers as shown in Figure 6.3.

64 6. Implementation and Evaluation

DataNodeStore

DataTreeStore

ParallelAccessDataTreeStore

BlobStore

Blobstore

Filesystem

Blockstore

Figure 6.3 Blobstore Architecture. It is divided into sublayers. DataNodeStore offers
abstract access to nodes of a balanced left-max-data tree, each node stored
as a block in the underlying Blockstore. DataTreeStore adds tree algorithms
and offers access to whole trees. ParallelAccessDataTreeStore handles race
conditions when accessing the same blob in different threads and the top layer
is an adapter that offers the BlobStore interface.

DataNodeStore

This layer works directly on a blockstore, but instead of offering blocks, it offers loading
tree node objects. Internally, it maps the tree nodes to blocks and stores them in the
blockstore.

DataTreeStore

This layer is responsible for combining tree nodes to whole trees. It works on top of the
DataNodeStore and offers an interface which can be used to load, modify and store whole
trees as opposed to single nodes. So this is the layer containing the tree algorithms for
accessing and resizing trees that are described in Sections 2.9 and 2.10. The reference in
Section 5 describes the layout of the block headers used.

ParallelAccessDataTreeStore

The same race condition described before for a blockstore also exists on the tree level. If an
application loads the same tree twice and writes both back, then only the last modification
survives. Like ParallelAccessBlockStore for blocks, this layer solves the problem for whole
trees by returning the same tree object if it is requested twice.

BlobStore

This is a simple adapter layer mapping the blobstore interface, which is used by the
application, to the interface offered by the DataTree stores.

6.1. Software Architecture 65

FsBlobStore

CachingFsBlobStore

ParallelAccessFsBlobStore

fs++ Adapter

Filesystem

fs++

Blobstore

Figure 6.4 Filesystem Architecture. It is divided into sublayers. FsBlobStore offers
access to filesystem blobs (i.e. directory blobs, file blobs or symlink blobs).
CachingFsBlobStore adds a caching layer and ParallelAccessFsBlobStore takes
care of race conditions when accessing the same directory blob in multiple
threads. The fs++ Adapter layer implements the fs++ filesystem interface
using these filesystem blobs.

6.1.3 Filesystem

This layer implements the filesystem interface offered by fs++ on top of a blobstore. It
follows the directory blob approach described in Section 4.6.2 and is split into sublayers as
shown in Figure 6.4.

FsBlobStore

This layer works directly on a blobstore, but instead of offering blobs, it offers loading file
blob, symlink blob and directory blob objects. The reference in Section 5 describes the
layout of the blob headers used.

CachingFsBlobStore

Each time a directory is accessed, the whole directory blob is loaded from the disk into
an in-memory directory structure and afterwards written back if it was changed. The
CachingFsBlobStore layer takes care that this only happens once if the same directory is
accessed multiple times in a short timespan.

ParallelAccessFsBlobStore

The same race condition described before for blockstores and datatreestores also has to be
solved on this level. If an application loads the same directory blob twice and writes both
back, then only the last modification survives. Like ParallelAccessBlockStore for blocks,
this layer solves the problem for directory blobs.

66 6. Implementation and Evaluation

fs++ Adapter

This is a layer implementing the platform independent fs++ filesystem interface. It uses
the file blobs, symlink blobs and directory blobs as offered by the layers below to implement
filesystem operations.

6.2 Performance Evaluation

This section contains a performance evaluation of CryFS. Since the implementation of
CryFS still has potential for performance optimizations, these experiments are not showing
the actual performance of a future final version of CryFS. Furthermore, it is generally
difficult to evaluate filesystem performance, because there are many different scenarios, e.g.
average file size or different access patterns, and filesystems can behave very differently in
different scenarios. The experiments are however able to show that—although CryFS is
more complex than the other filesystems—it still has good performance and can be used in
practice.

6.2.1 Experiment Setup

We tested CryFS 0.8 against EncFS 1.7.4, TrueCrypt 7.1a and VeraCrypt 1.15. CryFS
was built with GCC 4.9.2 using optimization level O3. The ciphertexts are stored in an
Ext4 filesystem. For an upper bound, we also tested the performance of Ext4 itself without
using a cryptographic filesystem on top. The automated benchmark script can be found
on github3.

CryFS has been run using aes-256-gcm. EncFS was also set to aes-256, and they use a
custom stream cipher mode which cannot be configured. For TrueCrypt and VeraCrypt, a
container with 35 GB size was created, also using the aes-256.

The experiments are run using the benchmarking tool bonnie++ 1.03e4. Bonnie++ tests
sequential read and write speed, both for bytewise and blockwise reads/writes. It tests
the number of random seeks the filesystem is able to perform per second, and how many
files the filesystem is able to create, delete, or stat per second. For all these tests, it also
reports the average CPU utilization.

The experiments have been run on a machine with Intel (R) Core(TM) i5-2500K CPU @
3.30GHz QuadCore, 16GB (4x4GB) DDR3-RAM on Ubuntu 15.04, Linux 3.19.0-22 x86 64.
Since filesystems can behave very differently on a SSD than on a HDD, we tested both,
using a Samsung SpinPoint M8 ST1000LM024 and a Samsung SSD 840 EVO 1TB.

Bonnie is run with the following command line options:

-d [test directory] # Choose HDD/SSD mount location
-x 3 # Run three times
-n 16:10240:10240:10 # Use 16*1024 files with 10KB each for create/stat/delete test

To minimize the influence of cache effects, bonnie++ runs the read/write tests with a test
file size that is twice the memory size (i.e. 32GB). Each experiment has been run three
times to ensure consistency of the results.

3https://github.com/cryfs/benchmark
4http://www.coker.com.au/bonnie++/

https://github.com/cryfs/benchmark
http://www.coker.com.au/bonnie++/

6.2. Performance Evaluation 67

6.2.2 Read and Write Tests

Table 6.1 shows the HDD performance and Table 6.2 the SSD performance of read/write
operations, both bytewise and blockwise. It also shows the results of a Rewrite run, which
iteratively loads a block from the file, modifies it, and writes it back. Each line shows one
run of the experiment, containing read/write speeds and average CPU utilization.

On a SSD, the bytewise read/write tests do not give meaningful results, because they do
a syscall for each byte and this is CPU bound at about 100MB/s, even for plain ext4.
Also on a HDD, CPU utilization for bytewise operations is high. However, we see that
the libFUSE filesystems (EncFS and CryFS) are a bit slower even, probably due to the
additional overhead for a libFUSE syscall. A libFUSE read/write syscall first calls into
the kernel code, and then back into the filesystem code that is running in userspace. The
filesystem operation result then is again routed to the kernel and from there back to the
userspace application that issued the syscall. Non-libFUSE filesystems like TrueCrypt,
VeraCrypt or plain ext4 have their filesystem implementation in the kernel and do not
have to call into a userspace filesystem implementation.

On a HDD, the write performance of CryFS is 20% slower than EncFS while the read
performance is about a factor of 2-3 slower, but still fast enough to be used in practice.
On a SSD, the write performance of CryFS is about 40% faster than EncFS, while read
performance is about a factor of 2 slower. The non-libFUSE filesystems TrueCrypt and
VeraCrypt are faster than both. CryFS is fast enough to be used in practice.

6.2.3 Seek, Create, Stat and Delete Tests

Table 6.4 shows the SSD performance of random seeks and of operations that work with
directory structure; i.e. creating and deleting files, and reading file attributes (stat). The
tests create, stat and delete 16384 files. If the tests created empty files, EncFS is much
faster than in the experiments shown here, because it only has to create empty ciphertext
files without doing any encryption. But then, this test would not be very close to practical
use cases. This is why we configured bonnie++ to create files with a size of 10KB.

Random seeks in CryFS are 20% slower on a HDD and 40% slower on a SSD compared to
EncFS. Random create in CryFS is comparable on a HDD and 35% faster than EncFS on
a SSD. Random stats are slower by 40% on a HDD and comparable to EncFS on a SSD.
Random delete is slower by a factor of 5 on a HDD and 3 on a SSD, but still fast enough
to be used in practice.

Creating and deleting files with TrueCrypt and VeraCrypt is strongly CPU bound, while
CryFS and EncFS have a better CPU utilization per operation. Interestingly, although
seeks are much faster on a SSD, creating and deleting files on a HDD and a SSD have
comparable performance.

6.2.4 Conclusion

Some filesystems operations in CryFS compare a bit faster, some a bit slower to EncFS.
Most are in a comparable performance range. Deleting files is the exception, being slower
by a factor of 3-5. But also the delete operation is fast enough for CryFS to be used in
practice.

For doing the same number of operations, CryFS uses a bit less CPU than EncFS and
much less CPU than TrueCrypt or VeraCrypt.

68 6. Implementation and Evaluation

Sequential Output Sequential Input Rewrite
bytewise blockwise bytewise blockwise blockwise

MB/s CPU MB/s CPU MB/s CPU MB/s CPU MB/s CPU

CryFS
34.5 30% 29.7 4% 30.3 37% 33.6 2% 19.3 4%
31.7 28% 28.6 3% 27.9 35% 30.4 2% 18.3 3%
39.7 35% 39.3 4% 46.5 48% 56.1 3% 20.5 4%

EncFS
33.2 35% 50.0 8% 83.9 81% 99.7 3% 32.9 5%
32.8 36% 51.6 8% 84.5 82% 96.6 3% 32.2 5%
33.2 36% 49.3 8% 84.6 81% 93.9 4% 31.8 5%

TrueCrypt
69.0 53% 90.6 8% 99.0 77% 113.4 6% 40.0 6%
90.7 80% 94.4 8% 98.3 76% 112.7 7% 40.7 6%
89.7 78% 94.8 8% 94.4 74% 112.7 7% 40.3 6%

VeraCrypt
68.3 52% 80.7 7% 86.6 70% 101.5 6% 37.9 5%
83.6 70% 85.5 7% 86.6 69% 101.6 6% 38.1 5%
85.8 72% 84.9 7% 86.5 69% 101.4 6% 37.6 5%

Plain Ext4
65.2 60% 100.4 6% 92.1 73% 118.2 5% 41.9 4%
70.4 53% 99.0 6% 95.1 74% 114.9 5% 39.8 4%
70.0 53% 96.5 6% 89.7 71% 111.7 5% 39.0 4%

Table 6.1 Performance experiments for read/write operations on a HDD. Each line is
one experiment run. The Rewrite test iteratively reads, modifies and writes
back a block of data. Write performance of CryFS is 20% slower than EncFS
and read performance is about a factor of 2-3 slower, but still fast enough
to be used in practice. TrueCrypt and VeraCrypt need some warmup time
and then are for bytewise reads/writes even faster than native Ext4. This is
surprising, but possible, because they manage only one fixed-size container
file in the Ext4 partition. They do not run Ext4 operations to access and
modify many ciphertext files like CryFS or EncFS do.

Sequential Output Sequential Input Rewrite
bytewise blockwise bytewise blockwise blockwise

MB/s CPU MB/s CPU MB/s CPU MB/s CPU MB/s CPU

CryFS
49.3 49% 75.8 9% 94.6 95% 125.9 5% 33.1 6%
47.6 49% 81.5 10% 93.2 97% 123.8 5% 34.9 6%
45.0 46% 80.6 10% 95.9 97% 120.0 5% 34.5 6%

EncFS
35.4 41% 57.3 10% 95.4 99% 215.6 5% 41.5 7%
34.8 42% 57.3 10% 95.7 99% 215.9 5% 41.6 7%
34.7 41% 57.3 10% 95.9 99% 220.2 5% 42.0 7%

TrueCrypt
108.6 96% 358.0 24% 104.0 98% 587.5 15% 198.2 16%
102.5 98% 273.5 20% 108.6 99% 592.1 15% 195.6 15%
101.6 97% 264.3 19% 107.3 99% 591.1 15% 202.2 16%

VeraCrypt
110.1 97% 362.8 26% 104.1 98% 591.2 16% 207.4 17%
103.0 98% 350.7 25% 103.7 99% 596.2 15% 207.0 17%
102.4 98% 341.7 25% 104.7 98% 594.7 16% 205.6 16%

Plain Ext4
118.5 94% 361.3 21% 121.4 98% 652.4 27% 215.7 19%
109.0 92% 402.2 24% 122.1 99% 648.8 27% 214.8 19%
113.0 94% 391.6 22% 121.5 99% 653.0 27% 214.6 19%

Table 6.2 Performance experiments for read/write operations on a SSD. Each line is
one experiment run. The Rewrite test iteratively reads, modifies and writes
back a block of data. Performance for bytewise reads and writes is CPU
bound at 100 MB/s, even on plain ext4. CryFS fast enough to be used in
practice. It is slower in reading and faster in writing than EncFS. Filesystems
not using libFUSE (TrueCrypt, VeraCrypt) are faster.

6.2. Performance Evaluation 69

Random Seeks Random Create Random Stat Random Delete
/s CPU /s CPU /s CPU /s CPU

CryFS
72.7 0% 3603 11% 5738 13% 3633 6%
70.0 0% 4087 11% 5687 12% 3781 6%
70.9 0% 3963 11% 5778 13% 3546 6%

EncFS
92.8 0% 3836 15% 9419 20% 17038 22%
90.5 0% 3860 15% 9378 20% 17432 21%
89.1 0% 3928 15% 9195 20% 17303 21%

TrueCrypt
104.5 0% 4231 99% + + 9913 99%
102 0% 4242 99% + + 9887 100%
99.6 0% 4222 99% + + 9735 99%

VeraCrypt
105.9 0% 4234 99% + + 9947 100%
104.5 0% 4201 99% + + 9871 100%
103.7 0% 1920 46% + + 9941 100%

Plain Ext4
127.4 0% + + + + + +
143.7 0% + + + + + +
130.4 0% + + + + + +

+) Test finished too fast to give meaningful results.

Table 6.3 Performance experiments for random seeks and file create/stat/delete on a
HDD. Each line is one experiment run. CryFS performance for seek is 20%
slower, create is comparable to EncFS, stat is 40% slower and delete is slower
by a factor of 5. However, all operations are fast enough for CryFS to be used
in practice. Performance of TrueCrypt and VeraCrypt for create/delete is CPU
bound while EncFS is more CPU efficient and CryFS even a bit better.

Random Seeks Random Create Random Stat Random Delete
/s CPU /s CPU /s CPU /s CPU

CryFS
1286 2% 3981 11% 5776 13% 3700 6%
1997 2% 4028 11% 5749 13% 3791 6%
1754 2% 4054 11% 5788 13% 3575 6%

EncFS
2757 5% 3074 15% 4864 20% 7749 21%
2741 5% 1974 15% 6142 20% 11077 21%
2688 5% 3332 15% 6139 20% 12232 20%

TrueCrypt
5421 6% 4237 99% + + 9895 100%
5418 5% 4251 99% + + 6546 67%
5274 6% 4214 99% + + 9850 100%

VeraCrypt
5484 7% 4235 99% + + 9856 100%
5273 6% 4250 99% + + 5345 58%
5397 6% 4223 99% + + 9809 100%

Plain Ext4
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

+) Test finished too fast to give meaningful results.

Table 6.4 Performance experiments for random seeks and file create/stat/delete on a
SSD. Each line is one experiment run. Seeks in CryFS are slower than EncFS
by 40%, creates are faster by 35%, stat is comparable and delete is slower by a
factor of 3. All operations are fast enough for CryFS to be used in practice.
Performance of TrueCrypt and VeraCrypt for create/delete is CPU bound
while EncFS is more CPU efficient and CryFS even a bit better.

70 6. Implementation and Evaluation

7. Security Analysis

In this section, we prove the security properties of CryFS. We show that CryFS inherits the
indistinguishability properties from the symmetric encryption scheme used to encrypt the
blocks. If this encryption scheme is IND-atk secure, then CryFS is IND-atk secure (atk ∈
{CPA,CCA1}). We also introduce an assumption and show that under this assumption,
CryFS also inherits IND-CCA2 and INT-CTXT security. If the blocks are encrypted with
a scheme that is only INT-PTXT but not INT-CTXT secure, then we need a stronger
assumption to show that CryFS inherits INT-PTXT security.

7.1 Model

This section provides a formal definition of CryFS. In Definition 7.1, we define a generic
symmetric encryption scheme and specialize it in Definition 7.2 to encrypt blocks; i.e.
tuples of a block ID and data. We extend this to a scheme encrypting sets of blocks; see
Definition 7.3. Then, in Definition 7.4, we introduce a scheme that encrypts a plaintext
p from an arbitrary plaintext space by applying an arbitrary function f mapping p to a
set of blocks and then encrypting the set of blocks. This is then used to define CryFS,
with f being the representation of the filesystem in plaintext blocks; see Definition 7.5. In
later sections, we use this chain of definitions to show for each definition that it is secure
if the previous one is secure. Using this, we show that CryFS is secure, if the underlying
symmetric encryption scheme to encrypt the blocks is secure. All the schemes we define
are specializations of the symmetric encryption scheme in Definition 7.1.

Definition 7.1 (symmetric encryption scheme)
Let S be a plaintext space and T be a ciphertext space. A symmetric encryption scheme C

is a tuple C = (EncCk ,Dec
C
k) of two functions with

EncCk : S → T DecCk : T → ({⊥} ∪ S)

The encryption function EncCk can be indeterministic, but each evaluation has to fulfill the
following condition.

∀k∀s ∈ S : DecCk (EncCk (s)) = s

Decryption can fail and return ⊥, for example if integrity is violated. The parameter k
represents the encryption key.

72 7. Security Analysis

In the following Definition 7.2, we define the specialization of a symmetric encryption
scheme for blocks. A block consists of a block ID and some data. For integrity reasons,
it additionally concatenates the block ID with the data before encrypting it. Let ρ be
the length of a block ID and K = {0, 1}ρ be the set of all possible block IDs. Let
BL := K× {0, 1}L be the set of all possible data blocks containing exactly L bytes and let
B∗ :=

⋃
L BL be the set of all possible data blocks. Let id : B∗ → K and data : B∗ → {0, 1}∗

be functions returning the ID respectively the data of a block. For any L ∈ N, let
g : BL → {0, 1}ρ+L be a bijective function concatenating ID and data of a block. The
function g is needed, because the block encryption scheme in Definition 7.2 concatenates
the block ID with the block data before encrypting it. The reason for this is to inherit
integrity properties of the encryption scheme for the block ID. It prevents attackers from
changing the ID of a block or reintroducing old blocks to the system with a new ID.

Definition 7.2 (block encryption scheme)
For a symmetric encryption scheme C = (EncCk ,Dec

C
k) that operates on S = T = {0, 1}∗,

the block encryption scheme C′ = (EncC
′
k ,Dec

C′
k) is defined as follows:

EncC
′
k : BL → B∗ DecC

′
k : B∗ → ({⊥} ∪ BL)

EncC
′
k ((i,m)) := (i,EncCk (g(i,m))

DecC
′
k ((i, c)) :=


⊥ if DecCk (c) = ⊥
⊥ if id(g−1(DecCk (c))) 6= i

g−1(DecCk (c)) otherwise

The following Definition 7.3 defines an encryption scheme encrypting a set of blocks. The
notation P(M) is used to describe the power set of M , i.e. the set of all subsets of M .
So P(BL) is the set of all possible sets of blocks of length L and P(B∗) is the set of all
possible sets of blocks. By using sets and not vectors of blocks, it is expressed that the
blocks do not need to be ordered.

Definition 7.3 (multi-block encryption scheme)
Let C′ = (EncC

′
k ,Dec

C′
k) be a block encryption scheme as defined in Definition 7.2. The

multi-block encryption scheme C∗ = (EncC
∗
k ,Dec

C∗
k) is then defined as follows:

EncC
∗
k : P(BL)→ P(B∗) DecC

∗
k : P(B∗)→ ({⊥} ∪ P(BL))

EncC
∗
k ({m1, . . . ,mr}) := {EncC′k (m1), . . . ,EncC

′
k (mr)}

DecC
∗
k ({c1, . . . , cr}) :=

{
⊥ if ∃ci : DecC

′
k (ci) = ⊥

{DecC′k (c1), . . . ,DecC
′
k (cr)} otherwise

Having defined a scheme to encrypt sets of blocks, we now can encrypt filesystem states by
mapping them to sets of blocks. This is done by the following Definition 7.4.

7.2. Attacker Restrictions 73

Definition 7.4 (f-multi-block encryption scheme)
Let C∗ be a multi-block encryption scheme as defined in Definition 7.3. Let M be any
plaintext space and for any L ∈ N, let f : M→ P(BL) be an injective function mapping

elements from M to sets of blocks. The f-multi-block encryption scheme Cf = (EncC
f

k ,Dec
Cf

k)
is then defined as follows:

EncC
f

k : M→ P(B∗) DecC
f

k : P(B∗)→ ({⊥} ∪M)

EncC
f

k (m) := EncC
∗
k (f(m))

DecC
f

k (c) :=

{
⊥ if DecC

∗
k (c) = ⊥

f−1(DecC
∗
k (c)) otherwise

In the following, we specialize Definition 7.4 for CryFS. Let now M be the set of all possible
filesystem states. For any L ∈ N, let f be an injective function mapping a filesystem state
to an arbitrary number of L-sized blocks.

f : M→ P(BL)

So f can be any way to represent a filesystem state using same size blocks. It is important
to note that a filesystem state includes all relevant information. It does not only include
the file contents, but also directory structure and file metadata. The CryFS representation
is not modeled in more detail, because this is sufficient to proof the security of CryFS.

Definition 7.5 (CryFS)
For a symmetric encryption scheme C = (EncCk ,Dec

C
k), let Cf be the corresponding f-multi-

block encryption scheme as defined in Definition 7.4. The function f is defined as above and
maps filesystem states to sets of blocks. Then, the CryFSC encryption scheme is defined as
CryFSC := Cf .

7.2 Attacker Restrictions

This section introduces some attacker restrictions and assumptions that are needed as
a basis for the security proofs. We also explain what the attacker restrictions mean in
practice and why the assumptions are justified.

7.2.1 Confidentiality

Since an attacker can easily distinguish two filesystems of different sizes or two filesystems
that use different block IDs, we need some restrictions on attackers. The following
Definition 7.6 explains restrictions put on IND-atk attackers.

74 7. Security Analysis

Definition 7.6 (Attacker restrictions)
• In the IND-atk game against a block encryption scheme C′, the attacker is restricted

to choosing two plaintext blocks with the same ID.

• In the IND-atk game against a multi-block encryption scheme C∗, the attacker is
restricted to choosing two plaintext sets with the same number of blocks and the
same block IDs.

• In the IND-atk game against a f-multi-block encryption scheme Cf , the attacker
is restricted to choosing two plaintexts m1,m2 where f(m1), f(m2) have the same
number of blocks and the same block IDs.

• In the IND-atk game against CryFS, the attacker is restricted to choosing two filesystem
states m1,m2 where f(m1), f(m2) have the same number of blocks and the same
block IDs.

The restrictions against C′,C∗ and Cf are only important for intermediate results. We
show in Section 7.3 that if there is no IND-atk attacker against the symmetric encryption
scheme C, then there is no IND-atk attacker against the block encryption scheme C′ with
the restriction from Definition 7.6. If there is no IND-atk attacker against C′ with this
restriction, then there is no IND-atk attacker against the multi-block encryption scheme
C∗ with this restriction. If there is no IND-atk attacker against C∗ with this restriction,
then there is no IND-atk attacker against the f-multi-block encryption scheme Cf with this
restriction. And finally, if there is no IND-atk attacker against Cf with this restriction, then
there is no IND-atk attacker against CryFS with this restriction. So the only restriction in
the final result is the restriction against CryFS.

The restriction to output two plaintext filesystem states that have the same number of
blocks effectively means that CryFS does not hide the filesystem size. The restriction that
the two filesystem states have to have the same block IDs means that CryFS does not hide
the block IDs. Since CryFS chooses the block IDs randomly and independently from the
actual filesystem state, this is not a problem.

7.2.2 Integrity

CryFS implements integrity as defined in Section 4.4.1. In summary: an authenticated
block cipher prevents an attacker from manipulating blocks, storing the block ID in the
(authenticated) block header prevents an attacker from replacing a block with a different
block, version counters in the block header prevent an attacker from rolling back blocks, and
an integrity-checked list of deleted blocks prevents an attacker from deleting or undeleting
blocks.

This implementation however needs local state in the client. To keep formalization of
CryFS simple, we do not use a stateful formalization but instead make the following
Assumption 1. This assumption is used in Lemma 7.15 when showing that INT-PTXT
security of multi-block encryption follows from INT-PTXT security of the underlying block
encryption.

Assumption 1 (for plaintext integrity)
An attacker against a multi-block encryption scheme cannot output or query a decryp-
tion oracle for {c1, . . . , cn} which decrypts to {p1, . . . , pn} if there was an oracle input
{p′1, . . . , p′m} with at least one p′i = pj .

7.3. Confidentiality 75

Intuitively, this assumption prevents an attacker from recombining blocks from two different
filesystem states at different times. Because of the integrity measures described, we believe
this to be true. The only way for an attacker to get valid encrypted blocks is to take them
from past states of the filesystem. If a filesystem state was p′ := {p′1, . . . , p′m} in the past
and the attacker fakes a ciphertexts that decrypts to p := {p1, . . . , pn} with at least one
p′i = pj , then it could only have done that by taking the pj /∈ p′ from other, past filesystem
states. However, because of the integrity measures described above, that means that these
blocks have either invalid version counters, invalid IDs in their headers, or are invalid due
to the integrity-checked list of deleted blocks. That is, an attacker is unable to fake a valid
{p1, . . . , pn} and we believe the assumption to be true.

For showing that INT-CTXT security of multi-block encryption follows from INT-CTXT
security of the underlying block encryption, the following weaker Assumption 2 is enough.
As shown in Lemma 7.7, Assumption 1 implies Assumption 2. Furthermore, Lemma 7.15
proves a result that is true under Assumption 1 while Lemma 7.14 shows that Assumption 2
would not be enough for this proof. That is, Assumption 2 is strictly weaker than
Assumption 1.

Assumption 2 (for ciphertext integrity)
An attacker against a multi-block encryption scheme cannot output or query a decryption
oracle for {c1, . . . , cn} if there was an oracle output {c′1, . . . , c′m} with at least one c′i = cj .

Lemma 7.7
If Assumption 1 is true, then Assumption 2 is true as well.

Proof Let Assumption 1 be true. Let there be an integrity attacker against a multi-
block encryption scheme who outputs or queries a decryption oracle for {c1, . . . , cn} which
decrypts to {p1, . . . , pn}. Assume there was an oracle output {c′1, . . . , c′m} which decrypts to
{p′1, . . . , p′m} with at least one c′i = cj and lead this to a contradiction. Because {c′1, . . . , c′m}
was oracle output, {p′1, . . . , p′m} was oracle input. Because c′i = cj , we also know p′i = pj .
This is a contradiction with Assumption 1.

It might be possible to imply these assumptions from weaker assumptions that only forbid
recombining two known plaintexts, i.e. recombining two past oracle inputs. This is left to
future work.

7.3 Confidentiality

In this section, we show that CryFS fulfills the confidentiality goals. Theorem 1 is the core
of this section. It shows that when the blocks of CryFS are encrypted with an IND-atk
secure encryption scheme C, then CryFSC itself is IND-atk secure. To prove this theorem,
we build a chain of lemmata showing the following:

C IND-atk
7.8
=⇒ C′ IND-atk

7.9/7.10
====⇒ C∗ IND-atk

7.11
==⇒ Cf IND-atk

Th.1
==⇒ CryFSC IND-atk

Throughout this section, if not otherwise defined, it is atk ∈ {CPA,CCA1,CCA2}. For all
attackers, the restrictions from Definition 7.6 apply.

76 7. Security Analysis

Game A

b, b′

b′

cb

Win Condition: b = b′

A′

g(id1,m1), g(id2,m2)

choose random
b ∈ {1, 2}

cb := EncCk(g(idb,mb))

(id1,m1), (id2,m2)

(id1, cb)

b′

Figure 7.1 Proof for block indistinguishability. An IND-atk attacker A against C is built
by using an IND-atk attacker A′ against C′. As defined for block encryption
schemes, A passes through the concatenated block ID and data to be encrypted
by the game. Oracle queries are not shown.

Lemma 7.8 (C is IND-atk ⇒ C′ is IND-atk)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme which is IND-atk secure. Let

C′ = (EncC
′
k ,Dec

C′
k) be the corresponding block encryption scheme. Then, C′ is IND-atk

secure.

Proof Let A′ be an attacker who wins the IND-atk game against C′. Then, an attacker A
as shown in Figure 7.1 wins the IND-atk game against C.

A′ chooses two plaintexts (id1,m1), (id2,m2) and sends them to A. A then forwards
g(id1,m1), g(id2,m2) to the game and gets the challenge c. It forwards (id1, c) to A′. This
challenge is well formed, because Definition 7.6 restricts A′ to choosing two plaintext blocks
with the same block ID; i.e. id1 = id2. A′ guesses b′, passes it to A, which forwards it to
the game. A wins exactly if A′ wins.

Lemma 7.9 (C is IND-CPA/CCA1 ⇒ C∗ is IND-CPA/CCA1)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme which is IND-atk secure (atk ∈

{CPA,CCA1}). Let C∗ = (EncC
∗
k ,Dec

C∗
k) be the corresponding multi-block encryption

scheme. Then, C∗ is IND-atk secure.

7.3. Confidentiality 77

Game A′

b, b′

b′

ci∗

Win Condition: b = b′

A∗

choose random i∗ ∈ {1..n}
∀i ∈ {1, . . . , i∗ − 1} : ci := EncC

′

k (m1,i)

∀i ∈ {i∗ + 1, . . . , n} : ci := EncC
′

k (m2,i)

m1,i∗ ,m2,i∗

choose random b ∈ {1, 2}
ci∗ := EncC

′

k (mb,i∗)

{m1,1, . . . ,m1,n}
{m2,1, . . . ,m2,n}

{c1, . . . , cn}

b′

Figure 7.2 Proof for multi-block indistinguishability. An IND-atk attacker A′ against C′

is built by using an IND-atk attacker A∗ against C∗. Out of the two plaintext
sets chosen by A∗, one random index is chosen by A′ and forwarded to the
game. For the other indices, the encryption oracle is used. Oracle queries are
not shown.

Proof Let C′ = (EncC
′
,DecC

′
) be the corresponding block encryption scheme. With

Lemma 7.8, we know that C′ is IND-atk secure. That is, it is enough to reduce an IND-atk
attacker against C∗ to an IND-atk attacker against C′.

Let A∗ be an attacker who wins the IND-atk game against C∗. We build an attacker A′

who wins the IND-atk game against C′ as described in Figure 7.2.

The oracles used by A∗ before it gets the challenge can be directly build using the cor-
responding oracles for A′. The attacker A′ plays the game as follows: A′ asks A∗ for
m̃1 = {m1,1, . . . ,m1,n}, m̃2 = {m2,1, . . . ,m2,n}. According to the attacker restriction in
Definition 7.6, both sets have the same number of entries and the same block IDs. The sets
are unordered, so we can w.l.o.g. choose the indices so that for all i: id(m1,i) = id(m2,i).
Then, A′ chooses randomly i∗ ∈ {1..n} and builds the ciphertext {c1, . . . , cn} by encrypting
i∗ − 1 plaintexts from m̃1 and n − i∗ from m̃2 using its oracle. Since m̃1 and m̃2 are

78 7. Security Analysis

unordered sets, it chooses the plaintexts in an arbitrary fashion, w.l.o.g. m1,1 . . .m1,i∗−1

and m2,i∗+1 . . .m2,n. Additionally, it encrypts one ciphertext not using its oracle but by
sending w.l.o.g. m1,i∗ and m2,i∗ to the game, which encrypts one of them according to its
choice bit b. This is a well formed IND-atk game against C′, because it fulfills the attacker
restriction id(m1,i∗) = id(m2,i∗) in Definition 7.6.

∀i ∈ {1, . . . , i∗ − 1} : ci := EncC
′
k (m1,i)

ci∗ := EncC
′
k (mb,i∗)

∀i ∈ {i∗ + 1, . . . , n} : ci := EncC
′
k (m2,i)

Then, A′ sends {c1, . . . , cn} as a challenge to A∗. Attacker A∗ guesses b′, which A′ forwards
as its guess to the game.

Now we calculate the win probability for A′. Let pi
∗
b′ be the probability that A∗ outputs b′

given that i∗ messages have been encrypted from m̃1 and n− i∗ messages from m̃2. Now
for i∗ /∈ {0, n}, A∗ gets a malformed challenge. However, the following calculations show
that this does not matter. When b = 1, we know that at least one plaintext was encrypted
from m̃1 and analogously for m̃2 when b = 2, so

Pr[A∗ outputs 1|b = 1] =
1

n− 1

n∑
i∗=2

pi
∗

1

Pr[A∗ outputs 2|b = 2] =
1

n− 1

n−1∑
i∗=1

pi
∗

2

In case i∗ = 0 or i∗ = n, A∗ is given a correctly formed challenge, because it is a valid
encryption of m̃0 respective m̃1. So we have

Pr[A∗ wins|A∗ is given a correctly formed challenge] =
1

2
(p0

2 + pn1)

Using this, we can calculate the win probability for A′ as follows:

Pr[A′ wins] =
1

2
(Pr[A∗ outputs 2|b = 2] · Pr[A∗ outputs 1|b = 1])

=
1

2n
(

n−1∑
i∗=0

pi
∗

2 +

n∑
i∗=1

pi
∗

1)

=
1

2n
(p0

2 +
n−1∑
i∗=1

(pi
∗

2 + pi
∗

1) + pn1)

=
1

2n
(p0

2 +
n−1∑
i∗=1

(1) + pn1)

=
1

2n
(p0

2 + (n− 1) + pn1)

=
n− 1

2n
+

1

2n
(p0

2 + pn1)

=
n− 1

2n
+

1

n
Pr[A∗ wins|A∗ is given a correctly formed challenge]

=
1

2
− 1

2n
+

1

n
Pr[A∗ wins|A∗ is given a correctly formed challenge]

7.3. Confidentiality 79

AdvIND(A′) = Pr[A′ wins]− 1

2

=
1

n
Pr[A∗ wins|A∗ is given a correctly formed challenge]− 1

2n

=
1

n
(Pr[A∗ wins|A∗ is given a correctly formed challenge]− 1

2
)

=
1

n
AdvIND(A∗)

Because AdvIND(A∗) is non-negligible, AdvIND(A) is non-negligible as well.

This proof is similar to a proof of multi-message security in the book of Katz and Lin-
dell [KL08], but adapted to block indistinguishability.

To achieve this result for IND-CCA2 security, Assumption 2 is needed. The following
Lemma 7.10 shows this result.

Lemma 7.10 (Assumption 2 and C is IND-CCA2 ⇒ C∗ is IND-CCA2)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme which is IND-CCA2 secure. Let

C∗ = (EncC
∗
k ,DecC

∗
k) be the corresponding multi-block encryption scheme. If Assumption 2

is true, then C∗ is IND-CCA2 secure.

Proof We build the attacker A′ from an attacker A∗ exactly as shown in the proof for
Lemma 7.9 and in Figure 7.2. In the CCA2 game, A∗ can use a decryption oracle even after
it got the challenge {c1, . . . , cn}. We build that oracle as follows: Assumption 2 implies
that the oracle query {q1, . . . , qn} does not contain any qi with qi = ci∗ . So we can decrypt
the qi individually with the decryption oracle of A′ and combine them again afterwards.

Lemma 7.11 (C∗ is IND-atk ⇒ Cf is IND-atk)
Let C∗ = (EncC

∗
k ,Dec

C∗
k) be a multi-block encryption scheme which is IND-atk secure. Let

Cf be a corresponding f-multi-block encryption scheme. For simplicity of notation, let
f−1(⊥) := ⊥. Then, Cf is IND-atk secure.

Proof Let Af be an attacker who wins the IND-atk game against Cf . Then, an attacker
A∗ as described in Figure 7.3 wins the IND-atk game against C∗. The oracles for Af can be
directly build by applying f or f−1 to the corresponding oracle of A∗. A∗ asks Af for m1,m2

and gives m′1 := f(m1),m′2 := f(m1) to the game. According to Definition 7.6, m′1 and m′2
have the same block IDs. That is, the plaintexts are valid plaintexts and fulfill the attacker
restrictions for the IND-atk game against C∗ in Definition 7.6. The game chooses b ∈ {1, 2}
and returns c′b := EncC

∗
k (m′b) = EncC

f

k (mb) to A∗. A∗ forwards this to Af . Af sends b′ to A∗

which A∗ forwards to the game. A∗ wins against C∗ if Af wins against Cf .

Theorem 1 (CryFS Confidentiality)
If the blocks are encrypted using an IND-atk (atk ∈ {CPA,CCA1}) secure symmetric

encryption scheme C, then CryFSC is IND-atk secure.

If Assumption 2 is true, then the same is true for IND-CCA2 security.

80 7. Security Analysis

Game A∗

b, b′

b′

c′b

Win Condition: b = b′

Af

m′
1 := f(m1)

m′
2 := f(m2)

m′
1,m

′
2

choose random
b ∈ {1, 2}

c′b := EncC
∗

k (m′
b)

m1,m2

c′b

b′

Figure 7.3 Proof for indistinguishability under a function f. An IND-atk attacker A∗

against C∗ is built by using an IND-atk attacker Af against Cf . Before passing
on the chosen plaintexts, it applies f to them. Oracle queries are not shown.

Proof Let C = (EncCk ,Dec
C
k) be an IND-atk secure symmetric encryption scheme. Lemma 7.9

implies that the corresponding multi-block encryption scheme C∗ = (EncC
∗
k ,Dec

C∗
k) is

IND-atk secure. An attacker against CryFS is restricted to choosing two plaintext filesystem
states that map to the same number of blocks and the same block IDs; see Definition 7.6.
That fulfills the requirements in Definition 7.6 for an attacker against a f-multi-block
encryption scheme. Since C∗ is IND-atk secure, Lemma 7.11 implies the IND-atk security
of CryFSC.

With Lemma 7.10, the same result is obtained for IND-CCA2 security under Assumption 2.

7.4 Integrity

In this section, we show that CryFS fulfills the integrity goals. Similar to the last section,
we show in Theorem 2 that if the blocks are encrypted with an INT-PTXT secure scheme C
and Assumption 1 holds, then CryFSC is INT-PTXT secure. The same holds for INT-CTXT
security under the weaker Assumption 2. To prove this theorem, we build a chain of
lemmata showing the following:

C INT-atk
7.12
==⇒ C′ INT-atk

7.13/7.15
=====⇒ C∗ INT-atk

7.16
==⇒ Cf INT-atk

Th.2
==⇒ CryFSC INT-atk

7.4. Integrity 81

Game A A′

c

(id, c)

m := DecCk(c)

m, c

(id,m)

g(id,m)

EncCk(g(id,m))

(id,EncCk(g(id,m)))

O
ra
cle

q
u
eries

Figure 7.4 Proof for block integrity. An attacker A against C is built using an attacker
A′ against C′. As defined for block encryption, it encrypts a concatenation g
of the block ID and data.

Throughout this section, it is atk ∈ {PTXT,CTXT}.
Lemma 7.12 (C is INT-atk ⇒ C′ is INT-atk)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme that is INT-atk secure. Let

C′ = (EncC
′
k ,Dec

C′
k) be the corresponding block encryption scheme. Then C′ is INT-atk

secure.

Proof Let A′ be an attacker who wins the INT-atk game against C′. Then the attacker A
as shown in Figure 7.4 wins the INT-atk game against C.

A′ generates a ciphertext (id, c) which, since A′ is successful, decrypts successfully. Defini-
tion 7.2 specifies that (id, c) can only decrypt successfully if c decrypts successfully. That
is, A sent a successfully decrypting ciphertext c to the game.

The oracles for A′ are built from the oracles for A according to Definition 7.2.

In case of INT-PTXT security, we also have to show that DecCk (c) was never input to the
oracle of A. Let (id, p) := g−1(DecCk (c)). Because g is injective, we know that the only case
in which DecCk (c) = g((id, p)) was input for the oracle of A is if (id, p) was input for the
oracle of A′. In this case, (id, p) = g−1(DecCk (c)) = DecC

′
k ((id, c)) was input for the oracle of

A′, which is a contradiction to A′ being successful. Since A′ is successful, the oracle for A
never had DecCk (c) as oracle input and the INT-PTXT oracle condition for A is fulfilled.

82 7. Security Analysis

In case of INT-CTXT security, we also have to show that c was never output of the oracle
of A. We know that (id, c) was never oracle output for A′, because otherwise A′ would
not have been successful. Assume there was an oracle output (id∗, c) with id∗ 6= id.
Then (id∗, c) has to decrypt successfully, which means that in Definition 7.2, we have
id(g−1(DecCk (c))) = id∗ 6= id. That is, (id, c) cannot have decrypted successfully which leads
to a contradiction. So there never was any oracle output (id∗, c). That is, the oracle for A
never had c as oracle output and the INT-CTXT oracle condition for A is fulfilled.

The following Lemma 7.13 shows that with Assumption 2, INT-CTXT security for multi-
block encryption follows from INT-CTXT security for block encryption.

Lemma 7.13 (Assumption 2 and C is INT-CTXT ⇒ C∗ is INT-CTXT)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme which is INT-CTXT secure.

Let C∗ = (EncC
∗
k ,Dec

C∗
k) be the corresponding multi-block encryption scheme. Then, if

Assumption 2 holds, C∗ is INT-CTXT secure.

Proof Since C is INT-CTXT secure, the block encryption scheme C′ is INT-CTXT secure;
see Lemma 7.12. So it is enough to reduce an attacker against C∗ to an attacker against C′.

Let A∗ be an attacker who wins the INT-CTXT game against C∗. Then the attacker A′ as
shown in Figure 7.5 loses the INT-CTXT game against C′ only with negligible probability:

A∗ sends a ciphertext c̃ = {c1, . . . , cn} to A′. Attacker A′ selects any element c1, and passes
it to the game. Since A∗ wins the game, we know DecC

∗
k ({c1, . . . , cn}) 6= ⊥ which implies

DecCk (c1) 6= ⊥ by Definition 7.3.

The encryption oracle for A∗ can be built using the encryption oracle for A′. We also have
to show that c1 was never output of the oracle of A′. We know that {c1, . . . , cn} was never
output of the oracle of A∗ and with Assumption 2, {c1, c′2, . . . , c′m} cannot have been output
of the oracle of A∗. That is, there is no oracle query of A∗ which caused the A′ oracle to
output c1.

As shown in the following Lemma 7.14, Assumption 2 is not enough to prove the same for
INT-PTXT security. However, in Lemma 7.15, we show that Assumption 1 is enough to
show that INT-PTXT security of multi-block encryption follows from INT-PTXT security
of block encryption. Together with Lemma 7.7, this implies that Assumption 2 is strictly
weaker than Assumption 1.

Lemma 7.14 (Assumption 2 and C is INT-PTXT 6⇒ C∗ is INT-PTXT)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme which is INT-PTXT, but not

INT-CTXT secure. Let C∗ = (EncC
∗
k ,Dec

C∗
k) be the corresponding multi-block encryption

scheme. Even if Assumption 2 holds, C∗ is not INT-PTXT secure.

Proof We build a successful INT-PTXT attacker A∗ against C∗.

Since C is not INT-CTXT secure, there exists an attacker A who successfully fakes a message
c with DecCk (c) = m 6= ⊥. The encryption oracle for this attacker A can be built out of the
oracle for A∗ as follows: Given an oracle query q, we ask the encryption oracle of A∗ for
EncC

∗
k ({q}) = {c} and return c to A.

7.4. Integrity 83

Game A′ A∗

c1

{c1, . . . , cn}

m := DecC
′

k (c1)

m, c1

{m1, . . . ,mn}

m1

EncC
′

k (m1)

...

mn

EncC
′

k (mn)

{EncC′

k (m1), . . . ,Enc
C′

k (mn)}

O
ra
cle

q
u
eries

Figure 7.5 Proof for multi-block integrity. An attacker A′ against C′ is built using an
attacker A∗ against C∗. Oracle queries are answered by calling the oracle for
each element in the set. In the end, one of the ciphertexts from the faked set
is forwarded to the game.

The attacker A∗ calls A two times and gets the faked messages c1 = EncCk (m1), c2 = EncCk (m2)
returned. A∗ then returns {c1, c2} to the game.

Let A be successful both times. That is, c1 and c2 were never oracle output of the oracle
of A and therefore {c1} and {c2} were never oracle output of the oracle of A∗. That is,
Assumption 2 cannot be applied and the attacker is allowed to output {c1, c2}. Because
{c1, c2} was never oracle output, A∗ is successful as well.

Lemma 7.15 (Assumption 1 and C is INT-PTXT ⇒ C∗ is INT-PTXT)
Let C = (EncCk ,Dec

C
k) be a symmetric encryption scheme which is INT-PTXT secure.

Let C∗ = (EncC
∗
k ,Dec

C∗
k) be the corresponding multi-block encryption scheme. Then, if

Assumption 1 holds, C∗ is INT-PTXT secure.

Proof Since C is INT-PTXT secure, the block encryption scheme C′ is INT-PTXT secure;
see Lemma 7.12. So it is enough to reduce an attacker against C∗ to an attacker against C′.

84 7. Security Analysis

Let A∗ be an attacker who wins the INT-PTXT game against C∗. Then the attacker A′ as
shown in Figure 7.5 loses the INT-PTXT game against C′ only with negligible probability:

A∗ sends a ciphertext c̃ = {c1, . . . , cn} to A′. Attacker A′ selects any element c1, and passes
it to the game. Since A∗ wins the game, we know DecC

∗
k ({c1, . . . , cn}) 6= ⊥ which implies

DecCk (c1) 6= ⊥ by Definition 7.3.

The encryption oracle for A∗ can be built using the encryption oracle for A′. We also have
to show that p1 was never input for the oracle of A′. We know that DecC

∗
k ({c1, . . . , cn}) =

{p1, . . . , pn} was never input for the oracle of A∗. It can only happen that p1 is input for
the oracle of A′ if there is a {p1, p

′
2, . . . , p

′
r} that was input for the oracle of A∗. Since A∗ is

successful, this cannot happen according to Assumption 1.

Since CryFS maps a filesystem state to a set of blocks before encryption, we have to show
that this does not hurt integrity. This is done by the following Lemma 7.16.

Lemma 7.16 (C∗ is INT-atk ⇒ Cf is INT-atk)
Let C∗ be a multi-block encryption scheme which is INT-atk secure. Let Cf be the
corresponding f-multi-block encryption scheme. For simplicity of notation, let f−1(⊥) := ⊥.
Then, Cf is INT-atk secure.

Proof Let Af be an attacker who wins the INT-atk game against Cf . Then the attacker
A∗ as shown in Figure 7.6 wins the INT-atk game against C∗.

Af sends a ciphertext c = EncC
f

k (p) = EncCk (f(p)) to A, which A∗ redirects to the game.

Because Af is successful, we know DecC
f

k (c) = p 6= ⊥, which implies DecCk (c) = f(p) 6= ⊥.
That is, the ciphertext sent by A∗ to the game decrypts successfully.

The encryption oracle for Af can be directly built from the encryption oracle of A∗ by
applying f before encrypting. In case of INT-PTXT security, we also have to show that f(p)
was never input to the oracle of A∗. This could only happen if p was input to the oracle
of Af . Because of DecC

f

k (c) = p, this is a contradiction to Af being successful. The oracle
condition for INT-PTXT security is fulfilled.

In case of INT-CTXT security, we also have to show that c was never output of the oracle of
A∗. This could only happen if c was also output of the oracle of Af which is a contradiction
to Af being successful. The oracle condition for INT-CTXT security is fulfilled.

And finally, we can now show the integrity theorem for CryFS. CryFSC is INT-PTXT secure
if used with an INT-PTXT secure symmetric encryption scheme C and Assumption 1 holds,
and it is INT-CTXT secure for an INT-CTXT secure symmetric encryption scheme under
the weaker Assumption 2.

Theorem 2 (CryFS Integrity)
If the blocks are encrypted using an INT-PTXT(INT-CTXT) secure symmetric encryption

scheme and Assumption 1 (Assumption 2) holds, then CryFSC is INT-PTXT(INT-CTXT)
secure.

7.4. Integrity 85

Game A∗ Af

c

c

m := DecC
∗

k (c)

m, c

O
ra
cle

q
u
eries

m

f(m)

EncC
∗

k (f(m))

EncC
∗

k (f(m))

Figure 7.6 Proof for integrity under a function f. An attacker A∗ against C∗ is built
using an attacker Af against Cf . Oracle queries are answered by applying f to
the plaintext before calling the oracle. The faked ciphertext is then forwarded
to the game.

Proof Let C = (EncCk ,Dec
C
k) be the INT-PTXT(INT-CTXT) secure encryption scheme

encrypting the blocks of CryFSC. CryFSC maps a filesystem state from M to a set of
blocks from P(B∗) and encrypts them using the f-multi-block encryption scheme Cf ; see
Definition 7.5. Since C is INT-PTXT(INT-CTXT) secure and Assumption 1 (Assumption 2)
holds, C∗ is INT-PTXT(INT-CTXT) secure as well; see Lemma 7.15 (Lemma 7.13). With
Lemma 7.16, we get the INT-PTXT(INT-CTXT) security of CryFSC.

Note on INT-atk

In this section, the INT-atk notion as introduced in Section 3.1.3 has been used. In earlier
works [BN08], they defined INT-atk relative to two constants qd and qe restricting the
maximal number of queries to either oracle. In the notion used in this thesis, the attacker
can use the encryption oracle without restriction but does not have access to a decryption
oracle. We show in the following that this does not weaken the security notion. It is in
fact equivalent to allowing the attacker an arbitrary but fixed number of decryption oracle
queries.

Lemma 7.17
If a scheme is secure against an INT-atk attacker who is not allowed to use a decryption
oracle, then for any fixed qd, it is also secure against an INT-atk attacker who is allowed to
send at most qd queries to a decryption oracle.

86 7. Security Analysis

Proof Let Aqd be an INT-atk attacker who can send at most qd decryption oracle queries
and has non-negligible success probability AdvINT-atk(Aqd). We build an attacker A0 who
does not have a decryption oracle and still non-negligible success probability.

The encryption oracle for Aqd can be built from the encryption oracle for A0. When Aqd
queries the decryption oracle, A0 decides randomly with probability 1

2 whether it tells Aqd
that the query did not decrypt successfully or whether it sends this query as challenge to
the game and finishes the game. If Aqd sends a challenge, A0 forwards it to the game.

If the i-th decryption oracle query would have decrypted successfully, then attacker A0

has a chance of (1
2)i of picking this query to forward it as a challenge to the game and

win. Thus, if any of the decryption oracle queries would have decrypted successfully,
A0 has a success probability of at least AdvINT-atk(A0) ≥ (1

2)qd , because i ≤ qd. This is
non-negligible, because qd is a constant value. If none of the decryption oracle queries
would have decrypted successfully, then attacker A0 has a chance of at least (1

2)qd of not
picking any oracle query, but instead forwarding the challenge from Aqd to the game.
So A0 has a success probability of AdvINT-atk(A0) = (1

2)qd · AdvINT-atk(Aqd). This is also
non-negligible, because AdvINT-atk(Aqd) is non-negligible. Thus, in any case, AdvINT-atk(A0)
is non-negligible.

That is, not restricting the access to the decryption oracle at all is a stronger security
notion. However, restricting the allowed number of queries to an arbitrary but fixed number
is equivalent to restricting the allowed number of queries to zero.

7.5 Adaptive Security

This section contains general ideas for adaptive security. A detailed analysis is out of scope
of this thesis and remains future work. In the model of adaptive security as introduced
by Dirk Achenbach et al. [Ach+15], there is an encrypted database, which in the case of
CryFS is the encrypted filesystem, and there are queries on that database, i.e. filesystem
operations. An attacker can see the access patterns of query processing, i.e. which blocks
are read or written. There are two important security goals to consider, database privacy
and query privacy. Both are formulated as indistinguishability games.

7.5.1 Goals

The first goal is database privacy, where the attacker is kept from gaining information about
the database content, i.e. the data stored in the filesystem. The attacker can choose two
databases m1,m2 of which the game chooses one mb unknown to the attacker. However,
the attacker gets Enc(mb). Then, the attacker can send queries qi to an oracle, which runs
qi on Enc(mb) and returns the access pattern to the attacker. Afterwards, the attacker has
to guess b.

The second goal is query privacy, where the attacker is kept from gaining information about
the queries run, i.e. the filesystem operation executed. The attacker can choose two queries
q1, q2 of which the game chooses one qb unknown to the attacker. Then, the attacker can
send databases mi to an oracle, which runs qb on Enc(mi) and returns Enc(mi) and the
access pattern to the attacker. Afterwards, the attacker has to guess b.

These security goals are quite hard to achieve and can be weakened by restricting the
oracle access, e.g. to a certain number of queries.

7.5. Adaptive Security 87

7.5.2 Attacker Types

The definitions for database privacy or query privacy state that an attacker gets the access
patterns of queries. In the case of CryFS, this is the access pattern of filesystem operations.
Two attacker types are distinguished. A write observer is an attacker who gets a sequence
of the IDs of the blocks that are written by a filesystem operation. Each sequence item
also contains a flag to tell the attacker which kind of operation it represents, i.e. whether
the block was added, deleted or modified. A general observer is an attacker who gets a
sequence that additionally contains the blocks that are only read, together with a flag
telling the attacker that the block was only read. Obviously, a general observer is more
powerful and harder to protect against. In the case of CryFS, a write observer is closer to
practice though, because read accesses happen locally and the synchronization server is
only able to see modifications.

7.5.3 Adapting CryFS

To be secure in an adaptive scenario, the CryFS implementation for resizing blobs has to
be modified. This section explains the changes needed to make the access pattern of blob
resize operations not depend on the current blob size. The goal is that the same blob
operation, i.e. resizing a blob by the same number of bytes or modifying the same data
region, has the same write access pattern, even in two filesystems where this blob has
a different size. The modifications explained here are not implemented in the reference
implementation.

Shrinking Blobs

When the size of a blob decreases, a subtree is deleted from the blob tree. The number of
blocks deleted depends on the size of that subtree, which in turn depends on the current
size of the whole blob. It is one, if the new blob size needs a leaf less but still the same
number of inner nodes. It is greater than one, if the system deletes some of the inner nodes
as well. An attacker could choose two filesystems which contain the same file but with a
different size, then shrink the file size (or just delete the whole file) and distinguish the
filesystems by the number of blocks that were deleted.

This problem can be solved by not deleting the blocks of the subtree directly. Instead, the
filesystem keeps the blocks in unmodified form in a free-list and deletes them at a later
timepoint in bulk. They could also be reused when new blocks are needed. With this,
shrinking a blob causes exactly one block to be modified—the inner node where the subtree
was rooted now has a child less. All other blocks are unmodified. If after this operation the
root node only has one child left, CryFS decreases the tree depth by overwriting the data in
the root block with the data from its child and deleting the child block. Deleting the child
is not a problem because of the free-list and writing to the root block is not a problem,
since this is exactly the same block that is modified anyhow in the first step because the
subtree is rooted here.. The free-list does not have to be stored on the server, because all
clients can locally build it by traversing all blocks and finding the unreferenced ones.

Growing Blobs

When the size of a blob increases, a subtree is added to the blob tree. The size of the
subtree depends on the current size of the blob. To not spoil this size to an attacker, the

88 7. Security Analysis

system takes a subtree of fitting size from the free-list described above. With that, growing
a blob causes exactly one block to be modified—the inner node where the subtree is added
as a child. All other blocks are unmodified.

If the tree is a max-data tree, CryFS increased the depth of the tree by copying the root
block to a new block and overwriting the root block with a new root block that is one
level above and has the copied block as first child. This causes two blocks to be written
and is distinguishable. To prevent that, either the blob ID could be allowed to change,
which would allow to just add a new root block above without copying and overwriting the
old one. Alternatively, a dummy write operation could be introduced by re-encrypting an
arbitrary block with a new IV each time a growing operation would otherwise only write
to one block.

Writing to a Blob

When writing to a blob and the write operation is inside the blob in both filesystems, then
it also modifies the same number of blocks and is indistinguishable. If in both blobs the
write operation is causing the blob to grow, then it is indistinguishable as described in the
previous paragraph. Growing a blob causes one block to be modified and writing data to a
blob leaf causes one block to be modified. So if a write operation in one of the filesystems
causes a blob to grow, then there are two modified blocks. To solve this, on each write
operation that does not cause a blob to grow, the system re-encrypts a random block with
a new IV. With this, each write operation modifies exactly two blocks.

7.5.4 Database Privacy

Database privacy is about keeping an attacker from gaining information about the database
content. In the case of CryFS, this means keeping the attacker from gaining information
about the data stored in the filesystem while the attacker can see the access patterns of
filesystem operations.

7.5.4.1 Readonly Queries

For readonly queries, there are no write accesses happening, so the system is secure against
a write observer by definition. So in this section, only general observers who have the
ability to see read access patterns as well are considered.

Reading Content

When in CryFS a file is read, the system first looks up the file. This access pattern is
determined by the file path only. Afterwards, the system descends to the leaves of the
file blob. This access pattern is determined by the file size only. So the access pattern for
a read query is determined by file path and file size. When a read query is issued, the
file path is issued as a parameter to it, so the file path causes the same lookup pattern in
both databases, given the file exists in both databases. So to get database privacy for read
queries, an attacker has to be restricted to read from a file that exists and has the same
size in both databases. Once this is fulfilled, the attacker does not have to be restricted
further. It can run an unlimited number of oracle queries.

An exception to this is a filesystem where symlinks are allowed. If the filesystem supports
symlinks, the access pattern is not only dependent on the path issued in the read query,
but also on the path stored in the symlink, which makes database privacy much harder to
achieve.

7.5. Adaptive Security 89

Search

When searching for file content or for the name of a file, the system has to traverse and
read all blocks anyhow, because there is no index. The order of processing the blocks is
not inherently important to a search algorithm, so it can process them in an arbitrary
order which gives an attacker no information about the content. So database privacy for
search queries is easily fulfilled. On modern systems however, the search functionality is
not implemented in the filesystem, but in the operating system, which then issues read
request to the filesystem. The generation of these read requests is not under the influence
of the filesystem implementation and can make two filesystems distinguishable.

7.5.4.2 Write Queries

For these queries, there are read and write accesses happening. So it is important to look
at both, write observers and general observers.

Adding Files/Directories

When in CryFS a file or directory is added, the system first looks up the directory which
should contain the new entry, adds an entry to this directory blob, and creates a new blob
for the file/directory itself. So there is a number of read operations for the lookup, which is
dependent on the depth of the path. Then, one blob is modified, which is indistinguishable
because of modifications described in Section 7.5.3. At last, there is one blob added which
is independent from the filesystem state. So to be secure against a write observer, it only
has to be ensured that before the operation, the entry does not exist in either filesystem;
otherwise the attacker could see that in one of the filesystems there is just an error raised
and nothing modified.

If security against a general observer is needed, the attacker additionally has to be restricted
to add an entry to a directory that has the same depth in both filesystems. In a filesystem
without symlinks, this is trivially fulfilled, because the path is issued by the attacker as
a query parameter. Adding symlink functionality breaks security. Furthermore, because
a general observer sees how many nodes the system reads when descending to the leaves
of the directory blob, the directory has to have the same size in both filesystems. The
number of oracle queries an attacker is allowed to do does not have to be restricted.

Deleting Files/Directories

When in CryFS a file or directory is deleted, the system first looks up the directory which
contains this entry, deletes the entry from there, and deletes the blob containing the entry
itself. Removing the entry from the directory blob is indistinguishable because of the
modifications described in Section 7.5.3. The same is true for deleting the blob containing
the entry itself. So to be secure against a write observer, the attacker only has to be
restricted to deleting an entry that actually exists in both filesystems.

As before, a filesystem with symlinks is not be secure against a general observer. For a
filesystem without symlinks to be secure against a general observer, the attacker has to be
restricted to deleting entries from a directory that has the same size in both filesystems,
because the attacker can see how many blocks the system reads when descending to the
leaf of the directory blob. The number of oracle queries an attacker is allowed to do does
not have to be restricted.

90 7. Security Analysis

Writing Content

As before, the attacker has to be restricted to write to a file that either does or does not
exist in both filesystems. Then, the system is secure against a write observer because
writing the same data region in a blob causes the same number of blocks to be modified,
independent of the concrete filesystem state. If the write operation grows the blob, the
modifications described in Section 7.5.3 take care that the accesses are indistinguishable.

As before, a filesystem without symlinks is also secure against a general observer, because
the lookup pattern is dependent on the path only. A filesystem with symlinks is not be
secure against a general observer.

7.5.5 Query Privacy

Query privacy is about keeping an attacker from gaining information about the database
queries. In the case of CryFS case, this means keeping the attacker from gaining information
about the filesystem operations run while they can see the access patterns of these operations.
This is a very interesting problem, as it is not easily achieved for a filesystem. We leave
this for future work.

7.5.6 Conclusion

With some modifications to the filesystem implementation, Database Privacy can be
achieved for CryFS. If the adversary is on server side, it is a write observer that can only
see write operations, which makes read operations secure by definition. With the described
modifications, CryFS is secure against such a write observer. Protecting against a general
observer that can also see read operations is possible, but the described solution only works
if the filesystem does not support symlinks. The number of oracle queries does not have to
be restricted.

7.6 Summary

CryFS is IND-CPA secure if the underlying block cipher is IND-CPA secure. The same is
true for IND-CCA1 security. For IND-CCA2 security, the same is proven under an additional
integrity assumption.

It is also proven that INT-CTXT security of CryFS follows from INT-CTXT security of the
underlying block cipher under the same assumption. If the underlying block cipher only
fulfills INT-PTXT security, a slightly stronger assumption is needed to show INT-PTXT
security of CryFS.

The assumptions made allow to keep a simpler stateless formalization, although CryFS
itself implements integrity in a stateful way. Since the assumptions are close to the actual
integrity implementation, they are justified and we believe them fulfilled.

8. Conclusion

In this thesis, we analyzed different existing solutions for secure cloud storage. To the best
of our knowledge, none is secure for cloud storage and at the same time easy enough to be
used in practice. We introduced CryFS, a cryptographic filesystem that is provably secure,
easy to use, and works well together with cloud storage providers. While the primary
target is to work together with third party synchronization clients as provided by providers
like Dropbox, it can easily be modified to use other synchronization software like Rsync or
Unison, or even to work without a local copy of ciphertexts and directly store the blocks
remotely, for example on NFS or Amazon S3. To store its data, CryFS splits the filesystem
data into fixed size blocks using balanced left-max-data trees. We introduced this kind
of trees and showed that they are well suited for splitting resizeable blobs into fixed size
blocks. They are proven to have very little space overhead, i.e. 0.05% in the reference
implementation. We described algorithms for random access, querying the size of blobs and
resizing them, proved the correctness of these algorithms and showed that these operations
are fast.

We discussed different design options for how directory structure could be stored, and
showed their advantages and disadvantages. All except for the real directory approach are
based on blocks, which makes the integrity implementation described in this thesis work. It
is interesting future work to implement integrity in the real directory approach. Analyzing
the different options leads to the conclusion that a parent pointer approach in the variant
with directory blobs and a cache is optimal, but a plain directory blob approach is easier to
implement. We also provided some ideas on how partial shareability could be implemented
in the different design options and refer to future work for looking into how attribute based
encryption could make this simpler.

We implemented CryFS and will continue to maintain and improve this implementation.
However, experiments have shown the performance of the current implementation to be
already very good, allowing CryFS to be used in practice. The current implementation uses
directory blobs, but we plan to offer an implementation with the parent pointer design in
future. It also lacks some of the integrity features described in this thesis. It stores the
block ID in the block header and uses GCM as an authenticated cipher, but it does not
implement block version counters or an integrity-checked list of deleted blocks yet. We

92 8. Conclusion

are planning to add these in future. We also described the software architecture of the
implementation and showed how we implemented it to be fast and secure. A reference
explains the space layout and can be used to implement other software working with CryFS
encrypted data.

CryFS as described in this thesis is secure and provably achieves confidentiality and integrity
of file contents, file metadata and directory structure. It is transparent and easy to use.
In their daily workflow, the user works directly with plaintext files while ignoring that
it is backed by cryptography. The security of CryFS has been proven in a game-based
approach. After introducing the basic security notions, we proved that file contents, file
metadata and directory structure are IND-atk secure if the block cipher used to encrypt
the blocks is IND-atk secure. For integrity, we showed the same for INT-atk security under
an additional assumption. We introduced this assumption, because the actual integrity
measures implemented are stateful, but the proofs are simpler when a stateless system is
assumed. We reasonably believe the assumption to be true because it is closely connected
to the integrity measures implemented, but this is not a formal proof. In future work, it
could be possible to prove the same integrity notions with an even weaker assumption or
maybe even to use a stateful model without such assumptions to prove integrity with. A
brief look at adaptive security showed that database privacy is feasible, but needs future
work. Query privacy is harder to achieve and also left to future work.

Overall, CryFS is a provably secure filesystem for cloud storage, that is fast, easy to use,
and works well together with third party cloud storage providers.

Bibliography

[Ach+15] Dirk Achenbach, Matthias Huber, Jörn Müller-Quade, and Jochen Rill. Closing
the Gap: A Universal Privacy Framework for Outsourced Data. Accepted for
BalkanCryptSec 2015, https://conferences.matheo.si/conferenceDisplay.py?
confId=16. 2015.

[Bel+97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A concrete security treat-
ment of symmetric encryption”. In: Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on. Oct. 1997, pp. 394–403. doi: 10.
1109/SFCS.1997.646128.

[Bel+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.“Relations
among notions of security for public-key encryption schemes”. English. In:
Advances in Cryptology - CRYPTO ’98. Ed. by Hugo Krawczyk. Vol. 1462.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998, pp. 26–45.
isbn: 978-3-540-64892-5. doi: 10.1007/BFb0055718.

[Bla00] John R Black Jr. “Message authentication codes”. PhD thesis. UNIVERSITY
OF CALIFORNIA DAVIS, 2000.

[Bla93] Matt Blaze. “A cryptographic file system for UNIX”. In: Proceedings of the
1st ACM conference on Computer and communications security. ACM. 1993,
pp. 9–16.

[BM95] Olaf Burkart and Bernhard Möller. Mathematics of Program Construction:
Third International Conference, MPC ’95, Kloster Irsee, Germany, July 17 -
21, 1995. Proceedings. 1995.

[BN08] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition Paradigm”.
English. In: Journal of Cryptology 21.4 (2008), pp. 469–491. issn: 0933-2790.
doi: 10.1007/s00145-008-9026-x.

[DD05] Ivan Damg̊ard and Kasper Dupont. Universally Composable Disk Encryption
Schemes. Sept. 2005.

[DR11] Thai Duong and Juliano Rizzo. Here Come The ⊕ Ninjas. May 2011.

[Dwo07] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. 2007.

[Ewi] Larry Ewing. https://en.wikipedia.org/wiki/Block cipher mode of operation.
Created with The GIMP.

https://conferences.matheo.si/conferenceDisplay.py?confId=16
https://conferences.matheo.si/conferenceDisplay.py?confId=16
http://dx.doi.org/10.1109/SFCS.1997.646128
http://dx.doi.org/10.1109/SFCS.1997.646128
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/s00145-008-9026-x
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

94 Bibliography

[Fou+08] Pierre-Alain Fouque, Gwenaëlle Martinet, Frédéric Valette, and Sébastien
Zimmer.“On the Security of the CCM Encryption Mode and of a Slight Variant”.
In: Applied Cryptography and Network Security. Springer. 2008, pp. 411–428.

[Gjø05] Kristian Gjøsteen. Security notions for disk encryption. Apr. 2005.

[Goy+06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. “Attribute-based
encryption for fine-grained access control of encrypted data”. In: Proceedings
of the 13th ACM conference on Computer and communications security. Acm.
2006, pp. 89–98.

[GS14] Konstantinos Giannakouris and Maria Smihily. Cloud computing - statistics on
the use by enterprises. http://ec.europa.eu/eurostat/statistics-explained/index.
php/Cloud computing - statistics on the use by enterprises. 2014.

[Hal05] Michael Austin Halcrow. “eCryptfs: An Enterprise-class Encrypted Filesystem
for Linux”. In: Proceedings of the Linux Symposium, Volume One. 2005, pp. 201–
218.

[Hor14] Taylor Hornby. EncFS Security Audit. https://defuse.ca/audits/encfs.htm. Feb.
2014.

[HW13] Susan Hohenberger and Brent Waters. “Attribute-based encryption with fast
decryption”. In: Public-Key Cryptography–PKC 2013. Springer, 2013, pp. 162–
179.

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Chapman and Hall/CRC cryptography and network security. 2008, pp. xviii +
534. isbn: 1-58488-551-3.

[LCH13] Cheng-Chi Lee, Pei-Shan Chung, and Min-Shiang Hwang. “A Survey on
Attribute-based Encryption Schemes of Access Control in Cloud Environments.”
In: IJ Network Security 15.4 (2013), pp. 231–240.

[Mia10] Quan-xing Miao. “Research and analysis on encryption principle of truecrypt
software system”. In: Information Science and Engineering (ICISE), 2010 2nd
International Conference on. IEEE. 2010, pp. 1409–1412.

[Moe04] B. Moeller. Security of CBC Ciphersuites in SSL/TLS: Problems and Counter-
measures. May 2004.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. Proceedings of INDOCRYPT 2004.
S. 343-355. 2004.

[SR14] Heidi Seybert and Petronela Reinecke. Survey on ICT (information and commu-
nication technology) usage in households and by individuals. Catalogue number:
KS-SF-14-016-EN-N. Short version: http://ec.europa.eu/eurostat/statistics-
explained/index.php/Internet and cloud services - statistics on the use by
individuals. 2014.

[Tea11] Ubuntu Privacy Remix Team. Security Analysis of TrueCrypt 7.0 a with an
Attack on the Keyfile Algorithm. Tech. rep. Technical report (Aug. 14, 2011).
https://www.privacy-cd.org/downloads/truecrypt 7.0a-analysis-en.pdf, 2011.

[Toa] Ray Toal. Ordered Trees. http://cs.lmu.edu/˜ray/notes/orderedtrees/.

http://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises
http://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises
https://defuse.ca/audits/encfs.htm
http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_cloud_services_-_statistics_on_the_use_by_individuals
http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_cloud_services_-_statistics_on_the_use_by_individuals
http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_cloud_services_-_statistics_on_the_use_by_individuals
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
http://cs.lmu.edu/~ray/notes/orderedtrees/

	Contents
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Structure

	2 Datastructure Theory
	2.1 Basics
	2.2 Perfect Trees
	2.3 Left-Perfect Trees
	2.4 Max-Data Trees
	2.5 Left-Max-Data Trees
	2.6 Balanced Trees
	2.7 Min-Data Trees
	2.8 Space Overhead
	2.9 Random Access
	2.10 Resizing
	2.10.1 Querying Size
	2.10.2 Growing
	2.10.3 Shrinking

	3 Cryptography Basics
	3.1 Security Definitions
	3.1.1 Security Goals
	3.1.2 Attacker Models
	3.1.3 Integrity
	3.1.4 Relations

	3.2 Block Ciphers
	3.3 Modes of Operation
	3.3.1 Electronic Codebook Mode (ECB)
	3.3.2 Cipher Block Chaining Mode (CBC)
	3.3.3 Counter Mode (CTR)
	3.3.4 Galois Counter Mode (GCM)

	3.4 Conclusion

	4 System Design
	4.1 General Idea
	4.2 Design Goals
	4.2.1 Achieving the Goals

	4.3 Design Overview
	4.4 Encryption Layer
	4.4.1 Integrity

	4.5 Blobstore Layer
	4.6 Filesystem Layer: Storing Directory Structure
	4.6.1 Central Directory Structure
	4.6.2 Directory Blobs
	4.6.3 Real Directories
	4.6.4 Path Headers
	4.6.5 Parent Pointers
	4.6.6 Conclusion

	5 System Reference
	5.1 Config File
	5.2 Block Layout
	5.3 Blob Layout

	6 Implementation and Evaluation
	6.1 Software Architecture
	6.1.1 Blockstore
	6.1.2 Blobstore
	6.1.3 Filesystem

	6.2 Performance Evaluation
	6.2.1 Experiment Setup
	6.2.2 Read and Write Tests
	6.2.3 Seek, Create, Stat and Delete Tests
	6.2.4 Conclusion

	7 Security Analysis
	7.1 Model
	7.2 Attacker Restrictions
	7.2.1 Confidentiality
	7.2.2 Integrity

	7.3 Confidentiality
	7.4 Integrity
	7.5 Adaptive Security
	7.5.1 Goals
	7.5.2 Attacker Types
	7.5.3 Adapting CryFS
	7.5.4 Database Privacy
	7.5.4.1 Readonly Queries
	7.5.4.2 Write Queries

	7.5.5 Query Privacy
	7.5.6 Conclusion

	7.6 Summary

	8 Conclusion
	Bibliography

